• 제목/요약/키워드: hydrogen electric vehicle

검색결과 115건 처리시간 0.024초

수소충전소와 수소전기차간의 안전통신을 위한 WiFi 프로토콜 비교 (Comparison of WiFi Protocols for Safety Communication Between Hydrogen Refueling Station and Fuel Cell Electric Vehicle)

  • 황하진;소동건;차도호;채혜진;정서희;황성호
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권6호
    • /
    • pp.81-87
    • /
    • 2023
  • 수소충전소와 수소전기차 간의 통신 프로토콜인 SAE J2601과 SAE J2799는 수소 충전에 관련된 내용만을 다루고 있다. 본 논문에서는 수소전기차의 수소검출, 전류, 전압을 측정하여, 수소충전소로 WiFi 프로토콜을 변화시켜 가면서 센서 데이터를 전송한다. 수소전기차의 센싱, 제어 및 센서 데이터 전송을 위해, 라즈베리파이를 이용하여 소규모 실험실 모델을 만들었다. 센서 데이터를 수소충전소의 데이터베이스에 저장하였고, 저장된 데이터 분석을 위해 그라파나를 이용하여 대쉬보드를 구성하였다. 수소가 검출되면 수소충전소의 디스펜서 밸브를 잠근다. 그리고 WiFi 프로토콜에 따른 평균 전송 지연을 측정하였다. 전송 지연 측정 결과, 수소충전소와 수소전기차간의 센서 데이터 전송을 위한 WiFi 프로토콜은 IEEE 802.11a가 가장 적합하였다.

반밀폐공간에서 발생되는 차량용 수소연료탱크 폭발 실험 (An Experimental Study on the Explosion of Hydrogen Tank for Fuel-Cell Electric Vehicle in Semi-Closed Space)

  • 박진욱;유용호;김휘성
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.73-80
    • /
    • 2021
  • Recently, Korea has established a plan for the supply of hydrogen vehicles and is promoting the expansion of the supply. Risk factors for hydrogen vehicles are hydrogen leakage, jet fire, and explosion. Therefore Safety measures are necessary for this hazard. In addition, risks in semi-closed spaces such as tunnels, underground roads, and underground parking lots should be analyzed. In this study, an explosion experiment was conducted on a hydrogen tank used in a hydrogen vehicle to analyze the risk of a hydrogen vehicle explosion accident that may occur in a semi-closed space. As results, the effect on the structure and the human body was analyzed using the overpressure and impulse values for each distance generated during the explosion.

퍼지 제어를 이용한 수소 상용차 전력 분배 시뮬레이션 (Commercial Hydrogen Vehicle Power Distribution Simulation Using Fuzzy Control)

  • 한재수;한재수;우종빈;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제34권4호
    • /
    • pp.369-380
    • /
    • 2023
  • There is no clear standard for estimating the power distribution of fuel cells and batteries to meet the required power in hydrogen electric vehicles. In this study, a hydrogen electric vehicle simulation model equipped with a vehicle electric component model including a fuel cell system was built, and a power distribution strategy between fuel cells and batteries was established. The power distribution model was operated through two control strategies using step control and fuzzy control, and each control strategy was evaluated through data derived from the simulation. As a result of evaluation through the behavior data of state of charge, fuel cell current and balance of plant, fuzzy control was evaluated as a proper strategy in terms of control stability and durability.

Design Characteristics on Electric Drivetrain for Electric Vehicle Based on Driving Performance

  • Park, Ji-Seong;Jung, Sang-Yong
    • 전기전자학회논문지
    • /
    • 제13권3호
    • /
    • pp.47-54
    • /
    • 2009
  • Design consideration on electric drivetrain(E-D/T), usually referred as electric motor for driving, its compatible reduction gear, and inverter, are performed for developing electric vehicle(EV) with efficient driving performance. Universal mode of driving cycle has been used to make up the actual vehicle performance, and its results are incorporated to the design of E-D/T.

  • PDF

수소 연료전지차로의 전환을 위한 녹색 전략 (Green pathway to hydrogen fuel cell vehicle)

  • 이문수;이민진;이영희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.152.1-152.1
    • /
    • 2011
  • This study analyzes transitions to a green path in transportation system in South Korea. We develop transportation system model with four new technology options, green cars; Hybrid electric vehicle, plug-in hybrid vehicle, electric vehicle and fuel cell vehicle. Among those technologies fuel cell vehicle is the best option assuming no GHG emissions when driving. We use MESSAGE model to get an optimal solution of pathway for high deployment of fuel cell vehicles under the Korea BAU transportation model. Among hydrogen production sources, off gas hydrogen is most economic since it is hardly used to other chemical sources or emits in South Korea. According to off gas hydrogen projection it can run 1.8 million fuel cell vehicles in 2040 which corresponds to 10% of all passenger cars expected in Korea in 2040. However, there are concerns associated with technology maturity, cost uncertainty which has contradictions. But clean pathway with off gas and renewable sources may provide a strong driving force for energy transition in transportation in South Korea.

  • PDF

수소연료전지차 연비 평가기술 개발 (Development of Fuel Economy Measurement Technology for Fuel Cell Electric Vehicle)

  • 정영우;박정규;예창환;박종진;오형석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.152-155
    • /
    • 2007
  • Fuel cell electric vehicles (FCEVs) using hydrogen gas are zero emission vehicles, thus emission measurement for combustion vehicles is not applicable. The hydrogen gas consumption for fuel economy will be measured by the stabilized pressure/temperature method, mass flow method and electrical current method, etc. In this research, weight method with a newly manufactured test equipment is applied to measure the hydrogen consumption because above 3-methods have a deviation. The hydrogen consumption is directly calculated by the weight differences of the external hydrogen tank before and after the chassis dynamometer test. Ultimately the fuel economy for FCEVs is obtained with a deviation less than 1% in all chassis dynamometer tests.

  • PDF

주행 데이터 분석을 통한 수소버스 운행안전 모니터링 기법 연구 (Study of Hydrogen Bus Operational Safety Monitoring Method through Driving Data Analysis)

  • 이현미;이인식;이용주;장정아;김시우; 심소정
    • 자동차안전학회지
    • /
    • 제15권4호
    • /
    • pp.58-64
    • /
    • 2023
  • The adoption of hydrogen-powered Elec is expanding globally. Hydrogen is recognized as a potentially hazardous energy source, and safety assessment is crucial for the development of plans to supply hydrogen-powered electric buses. Hydrogen gas leakage can have a significant impact during bus operations, and continuous hydrogen leakage in hydrogen-powered vehicles can result in fatal accidents. In this study, information about hydrogen leakage is collected through sensors installed within the vehicles and is measured when the sensor detects a leak. The study also proposes the use of Pseudo Fuel Leakage (PFL, %) as an additional indicator for evaluating and monitoring hydrogen safety and leakage.

수소 연료전지차의 재순환시스템 모델링 연구 (Modeling of Hydrogen Recirculation System for Fuel Cell Vehicle)

  • 김재훈;노용규;전의식;이종현
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.481-487
    • /
    • 2011
  • A fuel cell vehicle using a polymer electrolyte membrane fuel cell (PEM FC) as power source produces electric power by consuming the fuel, hydrogen. The unconsumed hydrogen is recirculated and reused to gain higer stack efficiency and to maintain the humidity in the anode side of the stack. So it is needed considering fuel efficiency to recirculated hydrogen. In this study, the indirect hydrogen recirculation flow rate measurement method for fuel cell vehicle is presented. By modeling of a convergent nozzle ejector and a hydrogen recirculation blower for the hydrogen recirculation of a PEM FC, the hydrogen recirculation flow rate was calculated by means of the mass balance and heat balance at Anode In/Outlet.

연료전지 차량의 전기적 절연 특성에 관한 연구 (Study on the Electric Insulation Characteristics in a Fuel Cell Vehicle)

  • 유정한;김덕환;김주한;정귀성;금영범;김세훈;안득균
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.150-155
    • /
    • 2012
  • Polymer Electrolyte Membrane Fuel Cell (PEMFC) stack power output is needed to be approximately 100 kW to meet the requirements of automotive applications. In order to secure the electric safety for drivers, passengers and mechanics, it is very important to understand phenomena of an electric insulation in a fuel cell vehicle. In this study, we studied the electric insulation properties and the insulation resistance of stack, system and vehicle in the field of fuel cell was estimated at the applied voltage of 500 V, respectively. Also we discussed the insulation factors such as the conductivity of coolant, the element of vehicle design and the intrinsic resistance of the vehicle components.

전기자동차 충전구 위치에 따른 전자파 방사특성에 관한 연구 (A Study on Electromagnetic Interference of Electric Vehicles with Variations of Charging Device Inlet Location)

  • 권순민;우현구
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.694-701
    • /
    • 2016
  • According to revolutionary developments in automobile technologies, eco-friendly advanced vehicles (hybrid vehicle, hydrogen fuel-cell vehicle, electric vehicle, etc.) are rapidly increasing. The electromagnetic compatibility is getting more important for development of a vehicle because those advanced vehicles are driven by electric energy and equipped with more electric systems. In general, electromagnetic compatibility tests consist of an electromagnetic interference(EMI) test and an electromagnetic susceptibility(EMS) test. EMI test of the electric vehicles are needed not only in driving mode but also in charging mode because they must be recharged by much electric energy for driving. Depending on vehicle manufacturers, the charging device type and the location of charging device inlet in electric vehicles are various. In this paper, in order to investigate EMI of electric vehicles in charging mode in consideration of the direction of measuring antenna and the location of charging device inlet, a series of electromagnetic emission tests are conducted using three electric vehicles (neighborhood electric vehicle, electric vehicle and electric vehicle-bus). The test results show that electromagnetic emission measurements in charging mode are dependent on the direction of measuring antenna and the location of charging device inlet.