DOI QR코드

DOI QR Code

퍼지 제어를 이용한 수소 상용차 전력 분배 시뮬레이션

Commercial Hydrogen Vehicle Power Distribution Simulation Using Fuzzy Control

  • 한재수 (충남대학교 일반대학원 기계공학과) ;
  • 한재수 (충남대학교 일반대학원 기계공학과) ;
  • 우종빈 (충남대학교 일반대학원 기계공학과) ;
  • 유상석 (충남대학교 기계공학부)
  • JAESU HAN (Department of Mechanical Engineering, Chungnam National University Graduate School) ;
  • JAESU HAN (Department of Mechanical Engineering, Chungnam National University Graduate School) ;
  • JONGBIN WOO (Department of Mechanical Engineering, Chungnam National University Graduate School) ;
  • SANGSEOK YU (Department of Mechanical Engineering, Chungnam National University College of Engineering)
  • 투고 : 2023.07.04
  • 심사 : 2023.08.29
  • 발행 : 2023.08.30

초록

There is no clear standard for estimating the power distribution of fuel cells and batteries to meet the required power in hydrogen electric vehicles. In this study, a hydrogen electric vehicle simulation model equipped with a vehicle electric component model including a fuel cell system was built, and a power distribution strategy between fuel cells and batteries was established. The power distribution model was operated through two control strategies using step control and fuzzy control, and each control strategy was evaluated through data derived from the simulation. As a result of evaluation through the behavior data of state of charge, fuel cell current and balance of plant, fuzzy control was evaluated as a proper strategy in terms of control stability and durability.

키워드

과제정보

이 논문은 정부(미래창조과학부)의 재원으로 한국연구재단의 지원(No. 2022R1A4A1030333) 및 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20203010030010).

참고문헌

  1. A. Farsi and M. A. Rosen, "PEM fuel cell-assisted lithium ion battery electric vehicle integrated with an air-based thermal management system", International Journal of Hydrogen Energy, Vol. 47, No. 84, 2022, pp.35810-35824, doi: https://doi.org/10.1016/j.ijhydene.2022.08.153.
  2. X. Chen, S. Long, L. He, C. Wang, F. Chai, X. Kong, Z. Wan, X. Song, and Z. Tu, "Performance evaluation on thermodynamics-economy-environment of PEMFC vehicle power system under dynamic condition", Energy Conversion and Management, Vol. 269, 2022, pp. 116082, doi: https://doi.org/10.1016/j.enconman.2022.116082.
  3. L. Ren, S. Zhou, and X. Ou, "Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China", Energy, Vol. 209, 2020, pp. 11-8482, doi: https://doi.org/10.1016/j.energy.2020.118482.
  4. S. Xiong, Q. Song, B. Guo, E. Zhao, and Z. Wu, "Research and development of on-board hydrogen-producing fuel cell vehicles", International Journal of Hydrogen Energy, Vol. 45, No. 35, 2020, pp. 17844-17857, doi: https://doi.org/10.1016/j.ijhydene.2020.04.236.
  5. Q. Xun, N. Murgovski, and Y. Liu, "Joint component sizing and energy management for fuel cell hybrid electric trucks", IEEE Transactions on Vehicular Technology, Vol. 71, No. 5, 2022, pp. 4863-4878, doi: https://doi.org/10.1109/TVT.2022.3154146.
  6. Y. Wang, S. J. Moura, S. G. Advani, and A. K. Prasad, "Optimization of powerplant component size on board a fuel cell/battery hybrid bus for fuel economy and system durability", International Journal of Hydrogen Energy, Vol. 44, No. 33, 2019, pp. 18283-18292, doi: https://doi.org/10.1016/j.ijhydene.2019.05.160.
  7. M. Inci, M. Buyuk, M. H. Demir, and G. Ilbey, "A review and research on fuel cell electric vehicles: topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects", Renewable and Sustainable Energy Reviews, Vol. 137, 2021, pp. 110648, doi: https://doi.org/10.1016/j.rser.2020.110648.
  8. K. Song, X. Wang, F. Li, M. Sorrentino, and B. Zheng, "Pontryagin's minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability", Energy, Vol. 205, 2020, pp. 118064, doi: https://doi.org/10.1016/j.energy.2020.118064.
  9. M. M. Jahromi and H. Heidary, "Durability and economics investigations on triple stack configuration and its power management strategy for fuel cell vehicles", International Journal of Hydrogen Energy, Vol. 46, No. 7, 2021, pp. 5740-5755, doi: https://doi.org/10.1016/j.ijhydene.2020.11.103.
  10. P. Pei and H. Chen, "Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: a review", Applied Energy, Vol. 125, 2014, pp. 60-75, doi: https://doi.org/10.1016/j.apenergy.2014.03.048.
  11. M. Yue, Z. Al Masry, S. Jemei, and N. Zerhouni, "An online prognostics-based health management strategy for fuel cell hybrid electric vehicles", International Journal of Hydrogen Energy, Vol. 46, No. 24, 2021, pp. 13206-13218, doi: https://doi.org/10.1016/j.ijhydene.2021.01.095.
  12. Y. Yan, Z. Xu, F. Han, Z. Wang, and Z. Ni, "Energy control of providing cryo-compressed hydrogen for the heavy-duty trucks driving", Energy, Vol. 242, 2022, pp. 122817, doi: https://doi.org/10.1016/j.energy.2021.122817.
  13. M. de las Nieves Camacho, D. Jurburg, and M. Tanco, "Hydrogen fuel cell heavy-duty trucks: review of main research topics", International Journal of Hydrogen Energy, Vol. 47, No. 68, 2022, pp. 29505-29525, doi: https://doi.org/10.1016/j.ijhydene.2022.06.271.
  14. Y. Ma, C. Li, and S. Wang, "Multi-objective energy management strategy for fuel cell hybrid electric vehicle based on stochastic model predictive control", ISA Transactions, Vol. 131, 2022, pp. 178-196, doi: https://doi.org/10.1016/j.isatra.2022.04.045.
  15. S. Yang, J. Kim, M. Choi, and Y. B. Kim, "Energy management technology development for an independent fuel cell-battery hybrid system using for a household", Journal of Hydrogen and New Energy, Vol. 30, No. 2, 2019, pp. 155-162, doi: https://doi.org/10.7316/KHNES.2019.30.2.155.
  16. Y. Kim, J. Han, and S. Yu, "Establishment of energy management strategy of 50 kW PEMFC hybrid system", Energy Reports, Vol. 9, 2023, pp. 2745-2756, doi: https://doi.org/10.1016/j.egyr.2023.01.096.
  17. J. Han, J. Han, and S. Yu, "Investigation of FCVs durability under driving cycles using a model-based approach", Journal of Energy Storage, Vol. 27, 2020, pp. 101169, doi: https://doi.org/10.1016/j.est.2019.101169.
  18. Woo, Y. Kim, and S. Yu, "Performance of fuel cell system for medium duty truck by cooling system configuration", Journal of Hydrogen and New Energy, Vol. 32, No. 4, 2021, pp. 236-244, doi: https://doi.org/10.7316/KHNES.2021.32.4.236.
  19. J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, P. R. Roberge, and T. J. Harris, "Performance modeling of the ballard mark IV solid polymer electrolyte fuel cell: I . mechanistic model development", Journal of The Electrochemical Society, Vol. 142, No. 1, 1995, pp. 1-8, doi: https://doi.org/10.1149/1.2043866.
  20. K. Sankar and A. K. Jana, "Nonlinear multivariable sliding mode control of a reversible PEM fuel cell integrated system", Energy Conversion and Management, Vol. 171, 2018, pp.541-565, doi: https://doi.org/10.1016/j.enconman.2018.05.079.
  21. M. Jung, J. Jeon, and S. Park, "Development of impedance-based equivalent circuit model to predict current-voltage behavior f or 4 8 V MHEV NMC battery", Transactions of the Korean Society of Automotive Engineers, Vol. 29, No. 4, 2020, pp. 337-348, doi: https://doi.org/10.7467/KSAE.2021.29.4.337.
  22. C. Lee, Y. Kim, and S. Yu, "Prediction of membrane water content characteristics through dynamic nonlinear model", Journal of Hydrogen and New Energy, Vol. 32, No. 6, 2021, pp. 497-505, doi: https://doi.org/10.7316/KHNES.2021.32.6.497.
  23. H. N. Vu, D. T. L. Tri, H. L. Nguyen, Y. Kim, and S. Yu, "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system", Energy, Vol. 278, 2023, pp. 127696, doi: https://doi.org/10.1016/j.energy.2023.127696.