• 제목/요약/키워드: hydrogen concentration

Search Result 1,961, Processing Time 0.224 seconds

The Finite Element Analysis on the Characteristics of the Hydrogen Diffusion for the Cr-Mo Steels (Cr-Mo강의 수소확산 특성에 관한 유한요소해석)

  • Lee, Hwi-Won;Ha, Min-Su
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2011
  • The size of hydrogen molecule is not so small as to invade into the lattice of material, and therefore, hydrogen invades into the material as atom. Hydrogen movement is done by diffusion or dislocation movement in the near crack tip or plastic deformation. Hydrogen appeared to have many effects on the mechanical properties of the Cr-Mo steel alloys. The materials for this study are 1.25Cr-0.5Mo and 2.25Cr-1Mo steels used at high temperature and pressure. The hydrogen amount obtained by theoretical calculation was almost same with the result solved by finite element analysis. The distribution of hydrogen concentration and average concentration was calculated for a flat specimen. Also, finite element analysis was employed to simulate the redistribution of hydrogen due to stress gradient. The calculation of hydrogen concentration diffused into the material by finite element method will provide the basis for the prediction of delayed fracture of notched specimen. The distribution of hydrogen concentration invaded into the smooth and notched specimen was obtained by finite element analysis. The hydrogen amount is much in smooth specimen and tends to concentrate in the vicinity of surface. Hydrogen embrittlement susceptibility of notched specimen after hydrogen charging is more remarkable than that of smooth specimen.

Dark Hydrogen Production by a Green Microalga, Chlamydomonas reinhardtii UTEX 90

  • SIM SANG JUN;GONG GYEONG TAEK;KIM MI SUN;PARK TAl HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1159-1163
    • /
    • 2005
  • The production of hydrogen by Chlamydomonas reinhardtii UTEX 90, a marine green alga, was performed under dark fermentation. The effects of initial nitrogen and phosphorus concentration on the cell growth and the production of hydrogen and organic substances were investigated. In the growth stage, the maximum dry cell weight (DCW) was 3 g/l when the initial ammonium concentration was 15 mM. In the dark fermentation, the maximum hydrogen production was $3.5\;{\mu}mol/\;mg$ DCW when the initial nitrogen concentration was 7.5 mM. The nitrogen concentration had a greater effect on organic compound and hydrogen production than the phosphorus concentration during the dark fermentation. An investigation of the duration of dark fermentation showed that, at least until three days, dark fermentation should be prolonged for maximum hydrogen production.

Influence of Hydrogen and Oxygen on the Thermotransport of Hydrogen in Modified Zircaloy-4 (Modified Zircaloy-4에서 수소의 Thermotransport에 있어서 수소와 산소의 보고)

  • Kim, Hyun-Sook;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.473-477
    • /
    • 2003
  • The hydrogen redistribution induced by thermotransport at temperatures likely to be encountered in nuclear power reactors (300-$340^{\circ}C$) was investigated in modified Zircaloy-4 alloys. Modified Zircaloy-4 alloys were prepared by altering the chemical composition of Zircaloy-4; the oxygen content of Zircaloy-4 (0.1 wt%) was increased to 0.2, 0.5 and 1.0 wt%. The heat of transport ($Q^{*}$ ) for hydrogen was measured by changing the initial hydrogen and oxygen concentrations. It was found that the heat of transport was not affected by increases in the initial hydrogen concentration from 63.3 to 91.7 ppm. However, the value of $Q^{Q}$ decreased from 6.8 to 4.5 ㎉/mol as the initial oxygen concentration was increased from 0.2 to 1.0 wt%.

Effects of Environmental Variables on Hydrogen Generation from Alkaline Solutions using used Aluminum Cans (알칼리 용액에서 알루미늄 재활용 캔을 이용한 수소생산에 미치는 환경 인자의 영향)

  • Yun, Kwi-Sub;Park, Chan-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • This study examined the effect of environmental variables, such as the NaOH concentration and solution temperature, on the rate of hydrogen generation from NaOH solutions through the corrosion of used aluminum cans as a potential candidate material for the safe and economic production of hydrogen. Corrosion of the used aluminum cans was promoted by increasing the NaOH concentration and solution temperature because of the loss of aluminum passivity. The measured rate of hydrogen generation from the NaOH solutions increased with increasing NaOH concentration due to the catalytic activity of NaOH in the hydrolysis process. However, at higher solution temperatures, the rate of hydrogen generation rate was less affected by the NaOH concentration than that at lower temperature.

A Numerical Study of the Residual Hydrogen Concentration in the Weld Metal (용접금속 잔류수소농도의 수치해석 연구)

  • Yoo, Jinsun;Ha, Yunsok;S.R., Rajesh
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.42-46
    • /
    • 2016
  • Hydrogen assisted cracking (HAC) is one of the most complicated problem in welding. Huge amount of studies have been done for decades. Based on them, various standards have been established to avoid HAC. But it is still a chronic problem in industrial field. It is well known that the main causes of the hydrogen crack are residual stress, crack susceptible micro structures and a certain critical level of hydrogen concentration. Even though the exact generating mechanism is unclear till today, it has been reported that the hydrogen level in the weld metal should be managed less than a certain amount to prevent it. Matsuda studied that the residual hydrogen level in the weld metal can be varied even if the initial hydrogen content is same. It is also insisted in this report that the residual hydrogen concentration is in stronger correlation with hydrogen crack than the initial hydrogen content. But, in practical point of view, the residual hydrogen is still hard to consider because measuring hydrogen level is time and cost consuming process. In this regard, numerical analysis is the only solution for considering the residual hydrogen content. Meanwhile, Takahashi showed the possibility of predicting the residual hydrogen by a rigorous FE analysis. But, few commercial software suitable for solving the weld metal hydrogen has been reported yet. In this study, two dimensional thermal - hydrogen coupled analysis was developed by using the commercial FE software MARC. Since the governing equation of the hydrogen diffusion is similar to the heat transfer, it is shown that the heat transfer FE analysis in association with hydrogen diffusion property can be used for hydrogen diffusion analysis. A series of simulation was performed to verify the accuracy of the model. For BOP (Bead-On-Plate) and the multi-pass butt welding simulations, remaining hydrogen contents in the weld metal is well matched with measurements which are referred from Kim and Masamitsu.

Solid Electrochemical Method of Measuring Hydrogen Concentration with O2-/H+ Hetero-Ionic Junction

  • Chongook Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.63-69
    • /
    • 2024
  • A novel method for measuring hydrogen concentration is introduced, along with its working principle and a novel detection algorithm. This configuration requires no additional reference compartment for potentiometric electrochemical measurements; therefore, it is the most suitable for measuring dissolved hydrogen in the liquid phase. The sensor's electromotive force saturates at a certain point, depending on the hydrogen concentration during the heating process of the sensor operation. This dynamic temperature scanning method provides higher sensitivity than the constant temperature measurement method.

Effects of bleaching time and hydrogen peroxide concentration on hair damage (탈색시간과 과산화수소 농도에 의한 모발의 손상)

  • Kim, Chung-Wun;Chun, Hong-Sung
    • Korean Journal of Human Ecology
    • /
    • v.14 no.3
    • /
    • pp.433-439
    • /
    • 2005
  • In this study, we investigated the morphological and physical changes of hair after bleaching treatments with different concentration of hydrogen peroxide in bleaching agent (3, 6, 9, or 12%) and various treatment time (10, 30, or 60 minutes). Tresses of virgin black hair were bleached using a commercial ammonium persulfate-hydrogen peroxide solution. The tensile strength of virgin hair treated with a bleaching agent depended on the concentration of hydrogen peroxide and the treatment time. As the concentration of hydrogen peroxide in bleaching agent went high and the treatment time increased, the tensile strength of the hair increased but the extension degree decreased. The virgin hairs which were not treated by bleaching agent showed morphologically healthy cuticle, whereas the bleached hairs showed swelled and damaged cuticle patterns. The swelling of the hair and the breaks of the cuticles increased positively by the concentration of hydrogen peroxide and the treatment time. These results suggest that exposure to more concentrated hydrogen peroxide with other bleaching components may lead to more severe hair damage.

  • PDF

Effect of Limiting Factors for Hydrogen Production in Sulfur Deprived Chlamydomonas Reinhardtii (황결핍 된 Chlamydomonas Reinhardtii 배양액에서 수소생산을 위한 제한 인자들의 영향)

  • Kim, Jun-Pyo;Sim, Sang-Jun
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.3
    • /
    • pp.286-292
    • /
    • 2006
  • Chlamydomonas reinhardtii is a green algae that can use light energy and water to produce hydrogen under anaerobic condition. This work reports the effect of limiting factors on hydrogen production in sulfur deprived anaerobic C. reinhardtii culture. In order to confirm the relationship between hydrogen production and limiting factors such as residual PSII activity and endogenic substrate degradation, the increase in chlorophyll concentration and the decrease in starch concentration was investigated during sulfur deprivation. The overall hydrogen production increased depending on cell density in range of $0.4{\sim}0.96\;g$ DCW/l. At this time, the increase in chlorophyll concentration during 24 h after sulfur deprivation increased in proportion to hydrogen production, however, the decrease in starch concentration was not proportional to that. Therefore, hydrogen production under sulfur deprivation using green alga was closely associated with the residual PSII activity than the endogenic substrate degradation.

Fermentative Bio-Hydrogen Production of Food Waste in the Presence of Different Concentrations of Salt (Na+) and Nitrogen

  • Lee, Pul-eip;Hwang, Yuhoon;Lee, Tae-jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.283-291
    • /
    • 2019
  • Fermentation of food waste in the presence of different concentrations of salt ($Na^+$) and ammonia was conducted to investigate the interrelation of $Na^+$ and ammonia content in bio-hydrogen production. Analysis of the experimental results showed that peak hydrogen production differed according to the ammonia and $Na^+$ concentration. The peak hydrogen production levels achieved were (97.60, 91.94, and 49.31) ml/g COD at (291.41, 768.75, and 1,037.89) mg-N/L of ammonia and (600, 1,000, and 4,000) $mg-Na^+/L$ of salt concentration, respectively. At peak hydrogen production, the ammonia concentration increased along with increasing salt concentration in the medium. This means that for peak hydrogen production, the C/N ratio decreased with increasing salt content in the medium. The butyrate/acetate (B/A) ratio was higher in proportion to the bio-hydrogen production (r-square: 0.71, p-value: 0.0006). Different concentrations of $Na^+$ and ammonia in the medium also produced diverse microbial communities. Klebsiella sp., Enterobacter sp., and Clostridium sp. were predominant with high bio-hydrogen production, while Lactococcus sp. was found with low bio-hydrogen production.

Effect of Hydrogen Concentration on Surface Oxidation Behavior of Alloy 600 in Simulated Primary Water of Pressurized Water Reactor (원전 1차측 수화학 환경에서 수소 농도가 Alloy 600의 표면산화 거동에 미치는 영향)

  • Yun Soo, Lim;Dong Jin, Kim;Sung Woo, Kim;Seong Sik, Hwang;Hong Pyo, Kim;Sung Hwan, Cho
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.466-475
    • /
    • 2022
  • Surface oxides and intergranular (IG) oxidation phenomena in Alloy 600 depending on hydrogen concentration were characterized to obtain clear insight into the primary water stress corrosion cracking (PWSCC) behavior upon exposure to pressurized water reactor primary water. When hydrogen concentration was between 5 and 30 cm3 H2/kg H2O, NiFe2O4 and NiO type oxides were found on the surface. NiO type oxides were found inside the oxidized grain boundary when hydrogen concentration was 5 cm3 H2/kg H2O. However, only NiFe2O4 spinel on the surface and Ni enrichment were observed when hydrogen concentration was 30 cm3 H2/kg H2O. These results indicate that the oxidation/reduction reaction of Ni in Alloy 600 depending on hydrogen concentration can considerably affect surface oxidation behavior. It appears that the formation of NiO type oxides in a Ni oxidation state and Ni enrichment in a Ni reduction (or metallic) state are common in primary water. It is believed that the above different oxidation/reduction reactions of Ni in Alloy 600 depending on hydrogen concentration can also significantly affect the resistance to PWSCC of Alloy 600.