Browse > Article
http://dx.doi.org/10.4014/jmb.1808.08023

Fermentative Bio-Hydrogen Production of Food Waste in the Presence of Different Concentrations of Salt (Na+) and Nitrogen  

Lee, Pul-eip (Department of Environmental Engineering, Seoul National University of Science and Technology)
Hwang, Yuhoon (Department of Environmental Engineering, Seoul National University of Science and Technology)
Lee, Tae-jin (Department of Environmental Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.2, 2019 , pp. 283-291 More about this Journal
Abstract
Fermentation of food waste in the presence of different concentrations of salt ($Na^+$) and ammonia was conducted to investigate the interrelation of $Na^+$ and ammonia content in bio-hydrogen production. Analysis of the experimental results showed that peak hydrogen production differed according to the ammonia and $Na^+$ concentration. The peak hydrogen production levels achieved were (97.60, 91.94, and 49.31) ml/g COD at (291.41, 768.75, and 1,037.89) mg-N/L of ammonia and (600, 1,000, and 4,000) $mg-Na^+/L$ of salt concentration, respectively. At peak hydrogen production, the ammonia concentration increased along with increasing salt concentration in the medium. This means that for peak hydrogen production, the C/N ratio decreased with increasing salt content in the medium. The butyrate/acetate (B/A) ratio was higher in proportion to the bio-hydrogen production (r-square: 0.71, p-value: 0.0006). Different concentrations of $Na^+$ and ammonia in the medium also produced diverse microbial communities. Klebsiella sp., Enterobacter sp., and Clostridium sp. were predominant with high bio-hydrogen production, while Lactococcus sp. was found with low bio-hydrogen production.
Keywords
Ammonia; salt; bio-hydrogen; dark fermentation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee MJ, Kim TH, Min BK, Hwang SJ. 2012. Sodium ($Na^+$) concentration effects on metabolic pathway and estimation of ATP use in dark fermentation hydrogen production through stoichiometric analysis. J. Environ. Manage 108: 22-26.   DOI
2 Jin B, Wang S, Xing L, Li B, Peng Y. 2016. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis. J. Environ. Sci. 43: 80-90.   DOI
3 Maru BT, Lopez F, Kengen SWM, Constanti M, Medina F. 2016. Dark fermentative hydrogen and ethanol production from biodiesel waste glycerol using a co-culture of Escherichia coli and Enterobacter sp. Fuel 186: 375-384.   DOI
4 Yin Y, Wang J. 2016. Characterization and hydrogen production performance of a novel strain Enterococcus faecium INET2 isolated from gamma irradiated sludge. Int. J. Hydrogen Energy 41: 22793-22801.   DOI
5 Song L, Dong X. 2009. Hydrogenoanaerobacterium saccharovorans gen. nov., sp. nov., isolated from H2-producing UASB granules. Int. J. Syst. Evol. Microbiol. 59: 295-299.   DOI
6 Noike T, Takabatake H, Mizuno O, Ohba M. 2002. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int. J. Hydrogen Energy 27: 1367-1371.   DOI
7 Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee JK, et al. 2015. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour. Technol. 182: 383-388   DOI
8 Kim DH, Kim SH, Shin HS. 2009. Sodium inhibition of fermentative hydrogen production. Int. J. Hydrogen Energy 34: 3295-3304.   DOI
9 Salerno MB, Park WS, Zuo Y, Logan BE. 2006. Inhibition of biohydrogen production by ammonia. Water Res. 40: 1167-1172.   DOI
10 Wang B, Wan W, Wang J. 2009. Effect of ammonia concentration on fermentative hydrogen production by mixed cultures. Bioresour. Technol. 100: 1211-1213.   DOI
11 Kadam PC, Boone DR. 1996. Influence of pH on ammonia accumulation and toxicity in halophilic, methylotrophic methanogens. Appl. Environ. Microbiol. 62: 4486-4492.   DOI
12 Wu JH, Lin CY. 2004. Biohydrogen production by mesophilic fermentation of food wastewater. Water Sci. Technol. 49: 223-228.
13 Lin CY, Lay CH. 2004. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int. J. Hydrogen Energy 29: 41-45.   DOI
14 Kang JH, Kim D, Lee TJ. 2012. Hydrogen production and microbial diversity in sewage sludge fermentation preceded by heat and alkaline treatment. Bioresour. Technol. 109: 239-243.   DOI
15 Markwell MAK, Haas SM, Bieber LL, Tolbert NE. 1978. A modification of the lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87: 206-210.   DOI
16 Jun YS, Yu SH, Ryu KG, Lee TJ. 2008. Kinetic study of pH effects on biological hydrogen production by a mixed culture. J. Microbiol. Biotechnol. 18: 1130-1135.
17 Khanal SK, Chen WH, Chen LL, Sung S. 2004. Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrogen Energy 29: 1123-1131.   DOI
18 Huang M, Ouyang L, Wang H, Liu J, Zhu M. 2015. Hydrogen generation by hydrolysis of MgH2 and enhanced kinetics performance of ammonium chloride introducing. Int. J. Hydrogen Energy 40: 6145-6150.   DOI
19 Arnold EG, Lenore SC, Andrew DE. 1992. pp. 56-59. American Public Health Association. Standard methods for the examination of water and wastewater, 18th Ed. American Public Health Assoc. Washington, DC, USA.
20 Michel DB, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356.   DOI
21 Muyzer G, Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.   DOI
22 Pedro MS, Haruta S, Hazaka M, Shimada R, Yoshida C, Hiura K, et al. 2001. Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter. J. Biosci. Bioeng. 91: 159-165.   DOI
23 Baek JS, Choi EH, Yun YS, Kim SC, Kim MS. 2006. Comparison of hydrogenases from Clostridium butyricum and Thiocapsa roseopersicina: hydrogenases of C. butyricum and T. roseopersicina. J. Microbiol. Biotechnol. 16: 1210-1215.
24 Cao X, Zhao Y. 2009. The influence of sodium on biohydrogen production from food waste by anaerobic fermentation. J. Mater. Cycles Waste Manage. 11: 244-250.   DOI
25 Thakur V, Jadhav SK, Tiwari KL. 2014. Optimization of different parameters for biohydrogen production by Klebsiella oxytoca ATCC 13182. Trends Appl. Sci. Res. 9: 229-237.   DOI
26 Adamson KA. 2004. Hydrogen from renewable resources-the hundred year commitment. Energ. Policy 32: 1231-1242.   DOI
27 Chen W, Ouyang LZ, Liu JW, Yao XD, Wang H, Liu ZW, et al. 2017. Hydrolysis and regeneration of sodium borohydride ($NaBH_4$) - a combination of hydrogen production and storage. J. Power Sources 359: 400-407.   DOI
28 Ma M, Duan R, Ouyang L, Zhu X, Peng C, Zhu M. 2017. Hydrogen generation via hydrolysis of $H-CaMg_2$ and $H-CaMg_{1.9}Ni_{0.1}$. Int. J. Hydrogen Energy 42: 22312-22317.   DOI
29 Kapdan IK, Kargi F. 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38: 569-582.   DOI
30 Xu J, Marc MA. 2015. Fermentation of swine wastewater-derived duckweed for biohydrogen production. Int. J. Hydrogen Energy 40: 7028-7036.   DOI
31 Yenigün O, Demirel B. 2013. Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 48: 901-911.   DOI
32 Kayhanian M. 1999. Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ. Technol. 20: 355-365.   DOI
33 Hartel U, Buckel W. 1996. Sodium ion-dependent hydrogen production in Acidaminococcus fermentans. Arch. Microbiol. 166: 350-356.   DOI
34 Bruggemann H, Baumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, et al. 2003. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl. Acad. Sci. USA 100: 1316-1321.   DOI
35 Boiangiu CD, Jayamani E, Brügel D, Herrmann G, Kim J, Forzi L, et al. 2005. Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria. J. Mol. Microbiol. Biotechnol. 10: 105-119.   DOI
36 Show KY, Zhang ZP, Tay JH, Liang DT, Lee DJ, Jiang WJ. 2007. Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor. Int. J. Hydrogen Energy 32: 4744-4753.   DOI
37 Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL. 2007. Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int. J. Hydrogen Energy 32: 172-184.   DOI
38 Kotay SM, Das D. 2008. Biohydrogen as a renewable energy resource-prospects and potentials. Int. J. Hydrogen Energy 33: 258-263.   DOI
39 Nath K, Das D. 2004. Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol. 65: 520-529.   DOI
40 Das D, Veziro lu TN. 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy 26: 13-28.   DOI
41 Oh YK, Seol EH, Lee EY, Park SH. 2002. Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy 27: 1373-1379.   DOI
42 Sivagurunathan P, Kumar G, Bakonyi P, Kim SH, Kobayashi T, Xu KQ, et al. 2016. A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. Int. J. Hydrogen Energy 41: 3820-3836.   DOI
43 Kim SH, Han SK, Shin HS. 2006. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem. 41: 199-207.   DOI
44 Zhang T, Fang HHP. 2000. Digitization of DGGE (denaturing gradient gel electrophoresis) profile and cluster analysis of microbial communities. Biotechnol. Lett. 22: 399-405.   DOI
45 Bomar M, Hippe H, Schink B. 1991. Lithotrophic growth and hydrogen metabolism by clostridium magnum. FEMS Microbiol. Lett. 83: 347-350.   DOI
46 Liu X, Zhu Y, Yang ST. 2006. Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme Microb. Technol. 38: 521-528.   DOI
47 Campoy RA, Guelfo LAF, Fallego CJA, Garcia LIR. 2017. Inhibition of the hydrolytic phase in the production of biohydrogen by dark fermentation of organic solid waste. Energy Fuels 31: 7176-7184   DOI
48 Xiaolong H, Minghua Z, Hanqing Y, Qinqin S, Lecheng L. 2006. Effect of sodium ion concentration on hydrogen production from sucrose by anaerobic hydrogen-producing granular sludge. Chinese J. Chem. Eng. 14: 511-517.   DOI
49 Sprott GD, Shaw KM, Jarrell KF. 1984. Ammonia/potassium exchange in methanogenic bacteria. J. Biol. Chem. 259: 12602-12608.   DOI
50 Wang X, Hoefel D, Saint CP, Monis PT, Jin B. 2007. The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge. J. Appl. Microbiol. 103: 1415-1423.   DOI
51 Chang JJ, Chen WE, Shih SY, Yu SJ, Lay JJ, Wen FS, et al. 2006. Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR. Appl. Microbiol. Biotechnol. 70: 598-604.   DOI
52 Hung CH, Cheng CH, Cheng LH, Liang CM, Lin CY. 2008. Application of clostridium-specific PCR primers on the analysis of dark fermentation hydrogen-producing bacterial community. Int. J. Hydrogen Energy 33: 1586-1592.   DOI
53 Minnan L, Jinli H, Xiaobin W, Huijuan X, Jinzao C, Chuannan L, et al. 2005. Isolation and characterization of a high H2-producing strain klebsiella oxytoca HP1 from a hot spring. Res. Microbiol. 156: 76-81.   DOI
54 Sivagurunathan P, Kumar G, Park JH, Park JH, Park HD, Yoon JJ, et al. 2016. Feasibility of enriched mixed cultures obtained by repeated batch transfer in continuous hydrogen fermentation. Int. J. Hydrogen Energy 41: 4393-4403.   DOI
55 Long C, Cui J, Liu Z, Liu Y, Long M, Hu Z. 2010. Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1. Int. J. Hydrogen Energy 35: 6657-6664.   DOI
56 Chen X, Sun Y, Xiu Z, Li X, Zhang D. 2006. Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int. J. Hydrogen Energy 31: 539-549.   DOI
57 Hitit ZY, Lazaro CZ. Hallenbeck PC. 2017. Hydrogen production by co-cultures of Clostridium butyricum and Rhodospeudomonas palustris: optimization of yield using response surface methodology. Int. J. Hydrogen Energy 42: 6578-6589.   DOI