• 제목/요약/키워드: hydrogen bonds

검색결과 375건 처리시간 0.019초

Thiosinamine의 결정 및 분자구조 (The Crystal and Molecular Structure of Thiosinamine)

  • 신현소;구정회;이순원
    • 대한화학회지
    • /
    • 제28권4호
    • /
    • pp.205-209
    • /
    • 1984
  • Thiosinamine, $H_2NCSNHCH_2CHCH_2$의 결정 및 분자구조를 X-선 회절법으로 규명하였다. 이 결정은 공간군 $P2_1/a$의 단사정계에 속하며 단위세포상수는 a = 9.819(3), b = 8.553(3), c = 9.170(2)${\AA}$, ${\beta}$ = 127.3(1)$^{\circ}$이고 z = 4이다. 814개의 회절 반점에 대한 강도 data는 Rigaku-Denki 자동 4축 회절기를 써서 얻었다. 구조는 직접법과 Fourier법으로 규명하였으며 좌표의 정밀화는 Full Matrix 최소 자승법에 의하여 행하였고 최종의 R값은 0.046이다. Thiourea moiety는 평면이며, 결합길이와 결합각은 thiourea unit를 포함하는 화합물에서 얻어진 값들과 잘 일치하고 있다. 분자들은 결정내에서 b축을 따라 두 종류의 N-H${\cdots}$S수소결합에 의하여 상호 결합하고 있다.

  • PDF

Crystal Packing of Two Different Tetranuclear Iron(III) Clusters, [(tacn)4Fe4O2(OH)4]2.8Br.9H2O (tacn = 1,4,7-triazacyclononane)

  • Jin, Mi-Kyung;Kim, Yoo-Jin;Jung, Duk-Young;Heu, Min;Yoon, Seok-Won;Suh, Byoung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권2호
    • /
    • pp.253-259
    • /
    • 2005
  • [$(tacn)_4Fe_4O_2(OH)_4]_2{\cdot}8Br{\cdot}9H_2O$ (tacn = 1,4,7-triazacyclononane), a tetranuclear iron(III) complex was synthesized by the hydrolysis of (tacn)FeCl3 and crystallizes in the orthorhombic space group, Pca2(1), with cell parameters, a = 37.574(3) $\AA$, b = 16.9245(12) $\AA$, c = 14.2830(11) $\AA$, V = 9082.9(12) ${\AA}^3$. [$(tacn)_4Fe_4O_2(OH)_4]^{4+}$ cations approach S4 point symmetry containing an adamantane skeleton. Four Fe(III) atoms have distorted octahedral environments with two hydroxo and an oxo bridges. Two [$(tacn)_4Fe_4O_2(OH)_4]^{4+}$ clusters having different Fe…Fe distances are connected to each other by the networked hydrogen bonds. The electrochemical behavior reveals irreversible three cathodic and two anodic peaks. Magnetic properties are characterized by antiferromagnetic (AF) interactions between Fe(III) ion spins. However, the low-lying states are still magnetic and exhibit a blocking behavior and a magnetic hysteresis at low temperatures.

Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway

  • Lee, Eunjung;Jeong, Ki-Woong;Shin, Areum;Jin, Bonghwan;Jnawali, Hum Nath;Jun, Bong-Hyun;Lee, Jee-Young;Heo, Yong-Seok;Kim, Yangmee
    • BMB Reports
    • /
    • 제46권12호
    • /
    • pp.594-599
    • /
    • 2013
  • The anti-inflammatory activity of eriodictyol and its mode of action were investigated. Eriodictyol suppressed tumor necrosis factor (mTNF)-${\alpha}$, inducible nitric oxide synthase (miNOS), interleukin (mIL)-6, macrophage inflammatory protein (mMIP)-1, and mMIP-2 cytokine release in LPS-stimulated macrophages. We found that the anti-inflammatory cascade of eriodictyol is mediated through the Toll-like Receptor (TLR)4/CD14, p38 mitogen-activated protein kinases (MAPK), extracellular-signal-regulated kinase (ERK), Jun-N terminal kinase (JNK), and cyclooxygenase (COX)-2 pathway. Fluorescence quenching and saturation-transfer difference (STD) NMR experiments showed that eriodictyol exhibits good binding affinity to JNK, $8.79{\times}10^5M^{-1}$. Based on a docking study, we propose a model of eriodictyol and JNK binding, in which eriodictyol forms 3 hydrogen bonds with the side chains of Lys55, Met111, and Asp169 in JNK, and in which the hydroxyl groups of the B ring play key roles in binding interactions with JNK. Therefore, eriodictyol may be a potent anti-inflammatory inhibitor of JNK.

$N_2$$SiH_4$ 가스를 사용하여 PECVD로 증착된 Silicon Nitride의 물성적 특성과 전기적 특성에 관한 연구 (Physical properties and electrical characteristic analysis of silicon nitride deposited by PECVD using $N_2$ and $SiH_4$ gases)

  • 고재경;김도영;박중현;박성현;김경해;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.83-87
    • /
    • 2002
  • Plasma enhanced chemical vapor deposited (PECVD) silicon nitride ($SiN_X$) is widely used as a gate dielectric material for the hydrogenated amorphous silicon(a-Si:H) thin film transistors (TFT's). We investigated $SiN_X$ films were deposited PECVD at low temperature ($300^{\circ}C$). The reaction gases were used pure nitrogen and a helium diluted of silane gas(20% $SiH_4$, 80% He). Experimental investigations were carried out with the variation of $N_2/SiH_4$ flow ratios from 3 to 50 and the rf power of 200 W. This article presents the $SiN_X$ gate dielectric studies in terms of deposition rate, hydrogen content, etch rate and C-V, leakage current density characteristics for the gate dielectric layer of thin film transistor applications. Electrical properties were analyzed through high frequency (1MHz) C-V and current-voltage (I-V) measurements. The thickness and the refractive index on the films were measured by ellipsometry and chemical bonds were determined by using an FT-IR equipment.

  • PDF

Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won;Kim Yong-Seok;Chang Gap-Shik
    • Fibers and Polymers
    • /
    • 제7권2호
    • /
    • pp.129-138
    • /
    • 2006
  • Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.

활성탄소섬유를 사용한 수돗물 내 트리할로메탄의 제거 (Removal of Trihalomethanes from Tap Water using Activated Carbon Fiber)

  • 유화인;유승곤
    • Korean Chemical Engineering Research
    • /
    • 제50권1호
    • /
    • pp.83-87
    • /
    • 2012
  • 활성탄소섬유를 사용하여 염소소독 후 수돗물 내에 부산물로 존재하는 4종 트리할로메탄을 제거하였다. THMs의 종류별 농도 및 용액의 온도를 달리하면서 흡착실험을 수행하고 활성탄소섬유의 표면특성에 따른 흡착능력과 흡착메카니즘을 살펴본 결과, 4종의 THMs은 모두 Langmuir 타입의 흡착등온곡선을 보이면서 매우 신속하게 활성탄소섬유에 흡착되었다. THMs의 흡착은 활성탄소섬유의 표면에 균일하게 발달된 미세공의 입구에 물리적 및 화학적 수소결합으로 이루어졌다고 판단된다. Langmuir 타입은 특히 저농도 오염원 일때 제거효율이 높기 때문에 수돗물 내에 약 $30{\mu}g/L$ 수준으로 존재하는 THMs의 제거에는 활성탄소섬유가 매우 효과적임을 알 수 있다. 4종 THMs 종류별 흡착량은 큰 차이는 없으나 chloroform, bromodichloromethane, dibromochloromethane, 및 bromoform 의 순서로 증가하였다. 이는 brom 원자수의 증가와 일치하며 극성의 감소로 용해도가 낮아짐에 따라 흡착량이 증가한 것이다.

수소화된 나노결정 실리콘 박막의 기판온도에 따른 나노구조 변화 (Variation in the Nanostructural Features of the nc-Si:H Thin Films with Substrate Temperature)

  • 남희종;손종익;조남희
    • 한국재료학회지
    • /
    • 제23권7호
    • /
    • pp.359-365
    • /
    • 2013
  • We investigated the nanostructural, chemical and optical properties of nc-Si:H films according to deposition conditions. Plasma enhanced chemical vapor deposition(PECVD) techniques were used to produce nc-Si:H thin films. The hydrogen dilution ratio in the precursors, [$SiH_4/H_2$], was fixed at 0.03; the substrate temperature was varied from room temperature to $600^{\circ}C$. By raising the substrates temperature up to $400^{\circ}C$, the nanocrystalite size was increased from ~2 to ~7 nm and the Si crystal volume fraction was varied from ~9 to ~45% to reach their maximum values. In high-resolution transmission electron microscopy(HRTEM) images, Si nanocrystallites were observed and the crystallite size appeared to correspond to the crystal size values obtained by X-ray diffraction(XRD) and Raman Spectroscopy. The intensity of high-resolution electron energy loss spectroscopy(EELS) peaks at ~99.9 eV(Si $L_{2,3}$ edge) was sensitively varied depending on the formation of Si nanocrystallites in the films. With increasing substrate temperatures, from room temperature to $600^{\circ}C$, the optical band gap of the nc-Si:H films was decreased from 2.4 to 1.9 eV, and the relative fraction of Si-H bonds in the films was increased from 19.9 to 32.9%. The variation in the nanostructural as well as chemical features of the films with substrate temperature appears to be well related to the results of the differential scanning calorimeter measurements, in which heat-absorption started at a substrate temperature of $180^{\circ}C$ and the maximum peak was observed at ${\sim}370^{\circ}C$.

수산기말단 폴리부타디엔/폴리 (프로필렌 글리콜) 혼합물을 이용한 수분산 폴리우레탄의 제조와 물성 (Preparation and Properties of Waterborne Polyurethanes Based on Mixtures of Hydroxy-Terminated Polybutadiene and Poly(propylene glycol))

  • 이선숙;이시호;이대수
    • 폴리머
    • /
    • 제30권2호
    • /
    • pp.152-157
    • /
    • 2006
  • 수산기말단 폴리부타디엔(hydroxy-terminated polybutadiene: HTPB) 폴리올을 이용한 수분산 폴리우레탄(water-home polyurethane: WPU)의 제조에서 HTPB와 poly(propylene glycol)(PPG)을 혼합 사용한 음이온계 WPU와 쯔비터이온계 WPU를 제조하고 이들의 특성을 조사하였다. WPU 제조 시 HTPB 함량이 증가하면 입자 크기는 커지는 경향을 보이고, 폴리우레탄의 연질부와 경질부의 상분리는 증가하였다. 음이온계 WPU에 비하여 쯔비터이온계 WPU는 건조 필름의 분자간 수소 결합이 강해지는 경향을 나타내었다. 음이온계 및 쯔비터이온계 WPU는 공통적으로 건조 필름이 HTPB 함량이 폴리올 중 25 wt%일때 실험 범위에서는 신율과 인장 강도가 최대값을 보였으며, 이러한 특성은 폴리우레탄의 연질부와 경질부 사이의 미세 상분리를 반영한 것으로 판단되었다.

Improvement of the Biocompatibility of Chitosan Dermal Scaffold by Rigorous Dry Heat Treatment

  • Kim, Chun-Ho;Park, Hyun-Sook;Gin, Yong-Jae;Son, Young-Sook;Lim, Sae-Hwan;Park, Young-Ju;Park, Ki-Sook;Park, Chan-Woong
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.367-373
    • /
    • 2004
  • We have developed a rigorous heat treatment method to improve the biocompatibility of chitosan as a tissue-engineered scaffold. The chitosan scaffold was prepared by the controlled freezing and lyophilizing method using dilute acetic acid and then it was heat-treated at 110$^{\circ}C$ in vacuo for 1-3 days. To explore changes in the physicochemical properties of the heat-treated scaffold, we analyzed the degree of deacetylation by colloid titration with poly(vinyl potassium sulfate) and the structural changes were analyzed by scanning electron microscopy, Fourier transform infrared (FT-IR) spectroscopy, wide-angle X-ray diffractometry (WAXD), and lysozyme susceptibility. The degree of deacetylation of chitosan scaffolds decreased significantly from 85 to 30% as the heat treatment time increased. FT-IR spectroscopic and WAXD data indicated the formation of amide bonds between the amino groups of chitosan and acetic acids carbonyl group, and of interchain hydrogen bonding between the carbonyl groups in the C-6 residues of chitosan and the N-acetyl groups. Our rigorous heat treatment method causes the scaffold to become more susceptible to lysozyme treatment. We performed further examinations of the changes in the biocompatibility of the chitosan scaffold after rigorous heat treatment by measuring the initial cell binding capacity and cell growth rate. Human dermal fibroblasts (HDFs) adhere and spread more effectively to the heat-treated chitosan than to the untreated sample. When the cell growth of the HDFs on the film or the scaffold was analyzed by an MTT assay, we found that rigorous heat treatment stimulated cell growth by 1.5∼1.95-fold relative to that of the untreated chitosan. We conclude that the rigorous dry heat treatment process increases the biocompatibility of the chitosan scaffold by decreasing the degree of deacetylation and by increasing cell attachment and growth.

Study on the Inclusion Behavior of Sulfobutylether-β-Cyclodextrin with Perphenazine by Flow Injection Chemiluminescence

  • Shen, Minxia;Lv, Hairu;Song, Zhenghua
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3199-3205
    • /
    • 2013
  • The inclusion behavior of sulfobutylether-${\beta}$-cyclodextrin (SBE-${\beta}$-CD) with perphenazine (PPH) was first studied by flow injection (FI)-chemiluminescence (CL) analysis with proposed $lg[(I_0-I_s)/I_s]=lgK_{P-CD}+nlg[C_{PPH}]$ model and molecular docking. Results showed that a 1:1 complex of SBE-${\beta}$-CD/PPH could online form, with the formation constant $K_{P-CD}$ of $2.57{\times}10^7Lmol^{-1}$ at 298 K. The thermodynamic parameters showed that the inclusion behavior of SBE-${\beta}$-CD/PPH was a spontaneous process by hydrophobic interaction. The molecular docking results revealed PPH entered into the larger cavity of SBE-${\beta}$-CD with two hydrogen bonds. Based on the linear relationship of the decrement of luminol/SBE-${\beta}$-CD/PPH CL intensity against the logarithm of PPH concentration ranging from 0.03 to 30.0 ng $mL^{-1}$, the present FI-CL analysis using luminol/SBE-${\beta}$-CD/PPH system was successfully applied to PPH determination in biological fluids and tablets with recoveries from 94.5 to 105.6% and RSDs less than 2.6% (n = 5).