• Title/Summary/Keyword: hydrodynamic wave forces

Search Result 145, Processing Time 0.022 seconds

Tethers tension force effect in the response of a squared tension leg platform subjected to ocean waves

  • El-gamal, Amr R.;Essa, Ashraf;Ismail, Ayman
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.327-342
    • /
    • 2014
  • The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy's linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark's beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e., 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.

Theoretical Study on the Dynamic Response of a Moored Buoy with Minimum Vertical Wave-exciting Force in Irregular Waves (수직운동(垂直運動)이 최소(最小)인 부표(浮標)의 불규칙파(不規則波)중 계류상태(繫留狀態)에 대한 동력학적(動力學的) 해석(解析))

  • H.S.,Choi;Hyo-Chul,Kim;Woo-Jae,Seong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 1984
  • A body form, which experiences minimum vertical wave-exciting forces in the vicinity of a prescribed wave frequency in water of finite depth, is obtained by an approximate method. Its configuration has the symmetry with respect to the vertical axis, expressed in terms of exponential functions. By distributing three-dimensional pulsating sources and dipoles on the immersed surface of the body, a velocity potential is determined and subsequently hydrodynamic forces including the 2nd-order time-mean drift forces are calculated. The dynamic behavior of the body moored in irregular waves is investigated numerically by using central difference method. Hereby irregular wave trains are simulated with examining its repeatability by comparing the resulting spectrum with original one. Numerical results indicated that the body form obtained from the present analysis possesses in general a favorable hydrodynamic characteristics in comparison with a spherical buoy and that the maximum excursion of the body can be significantly reduced by setting pre-tension of an appropriate amount in the mooring cable.

  • PDF

Time-Domain Analysis of Nonlinear Wave-Making Phenomena by a Submerged Sphere Oscillating with Large Amplitude (대진폭 조화 운동을 하는 잠수구에 의한 비선형 조파현상의 시간영역 해석)

  • Kim, Yong-Jig;Ha, Young-Rok
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.382-385
    • /
    • 2006
  • A high-order spectral/boundary-element method is newly adapted as an efficient numerical tool. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved fly using the high-order spectral method and body potential is solved fly using the high-order boundary element method. Through the combination of these two methods, the wave-making problems fly a submerged sphere moving with the large amplitude oscillation are solved in time-domain. With the example calculations, nonlinear effects on free-surface profiles and hydrodynamic forces are shown and discussed.

  • PDF

Hydrodynamic Forces produced by the Swaying Oscillation of Cylinders with Chine Sections on the Free Surface. (배골형단면(背骨型斷面) 주상체(柱狀體)의 좌우동요(左右動搖)에 있어서의 동유체역학적(動流體力學的) 힘에 관하여)

  • J.H.,Hwang;Y.S.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 1974
  • Hydrodynamic forces and moments produced by the swaying oscillation on the free surface were exactly calculated by Ursell-Tasai method for the cylinders with Kim's chine form sections and the sway responses of the cylinders of those chine form sections among the regular beam sea were also calculated. The results of the computation were compared with those of Lewis form sections. It is concluded that the effects of the section form on the added mass, and damping are small, if the section forms had same beam-draft ratio and sectional area coefficient in the case of sway motion. It is also known that the above little effects of section shapes on the basic hydrodynamic forces do not effect on the sway motion responses of cylinderical bodies among the regular beam sea. The sway motion responses of cylinderical bodies are varied linearly with the wave numbers.

  • PDF

On the Hydrodynamic Forces of Oscillating Cylinders in the Presence of a Free Surface

  • Hwang, J.H.;Rhee, K.P.;Hong, S.W.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.4
    • /
    • pp.13-20
    • /
    • 1980
  • The integral equation method to solve the boundary-value problem of a 2-dimensional body oscillating in the presence of a free surface generally breaks down at and near irregular frequencies due to the hypothetical flow inside the body. In this paper singularity distributions were extended to an inner free surface to remove the irregular frequency as Ohmatsu's work in 1978, and the solution for the above problem was found by using stream function. For various bodies including Lewis form cylinders, the hydrodynamic forces were calculated numerically at various wave numbers. From the results we concluded that the irregular frequencies can be removed even for the Lewis form cylinder as Ohmatsu done for circular cylinders, and calculated hydrodynamic forces by the present method are little higher than those of Ohmatsu's when the singularities are put on the inner free surface of the body. We specially point out that the solution for heaving motion converges in an oscillatory manner but not for swaying and rolling motions.

  • PDF

Hydrodynamic Forces on Fish Cage Systems under the Action of Waves and Current (가두리 시설이 파랑과 흐름에 의해 받는 유체력 특성)

  • Kim, Tae-Ho;Kim, Chang-Gil;Kim, Ho-Sang;Baik, Chul-In;Ryu, Cheong-Ro
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.190-196
    • /
    • 2002
  • In order to analyze the hydrodynamic forces on fish cage systems, made of frames and nettings, under waves and current, hydraulic model experiments for square type and circular type of fish cage system were carried out in a towing tank. Both cage systems consist of net cages supported by floating frames made of two concentric pipes and four weights hanging from the bottom corners of the nets. There was little difference in the hydrodynamic force on the square type of fish cage system by wave heading under regular waves and the peak frequency of the force on each cage system was in a good agreement with that of induced irregular wave. In addition, it was also observed that the circular type of cage system was more stable to the action of waves and current than the square type.

2-dimensional Hydrodynamic Forces of Heaving, Swaying and Rolling Cylinders on a Free Surface of a Water of Finite Depth

  • Rhee, K.P.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.14 no.3
    • /
    • pp.13-22
    • /
    • 1977
  • The hydrodynamic forces acting on a forced oscillating 2-dimensional cylinder on a free surface of a fluid of a finite depth are calculated by distributing singularities on the immersed body surface. And the Haskind-Newman relation in a fluid of a finite depth is derived. The wave exciting force of the cylinder to an oscillation is also calculated by using the above relation. The method is applied to a circular cylinder swaying in a water of finite depth, and then, to a rectangular cylinder heaving, swaying, and rolling. The results of above cases give a good agreement with those by earlier investigators such as Bai, Keil, and Yeung. Also, this method is applied to a Lewis form cylinder with a half beam-to-draft ratio of 1.0 and a sectional area coefficient of 0.941, and to a bulbous section cylinder which is hard to represent by a mapping function. The results reveal that the hydrodynamic forces in heave increase as the depth of a water decrease, but in sway or roll, the tendency of the hydrodynamic forces is difficult to say in a few words. The exciting force to heave for a bulbous section cylinder becomes zero at two frequencies. The added mass moment of inertia for roll is seemed to mainly depend on the sectional shape than the water depth.

  • PDF

A Study for Hydrodynamic Forces Action on Structural Parts of Semi-submersible Units. (반체수식 해양구조물의 요소부제에 작용하는 유체력)

  • 박노식
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.124-130
    • /
    • 1994
  • This paper compared with the hydrodynamic interference acting on the semi-submersible element model with 1-lowerhull and 2-columns. In this case, calculation are applying the strip method and 3-dimensional source distribution method. As the wave frequency and the distance between increase, the influence effects of parts upon each other decrease and approach the results calculated by using the strip method. Thus, it can be prepared for the investigation of new practical method of investigation of new practical method of hydrodynamic forces acting on huge structures.

  • PDF

Hydrodynamic characteristics of a fixed semi-submersible platform interacting with incident waves by fully nonlinear method

  • Zhang, Zi-Lin;Yuan, Hong-Tao;Sun, Shi-Li;Ren, Hui-Long
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.526-544
    • /
    • 2021
  • Based on the potential flow theory, a fully nonlinear numerical procedure is developed with boundary element method to analyze the interaction between a fixed semi-submersible platform and incident waves in open water. The incident wave is separated from the scattered wave under fully nonlinear boundary conditions. The mixed Euler-Lagrangian method is used to capture the position of the disturbed wave surface in local coordinate systems. The wave forces exerted on an inverted conical frustum are used to ensure the accuracy of the present method and good agreements with published results are obtained. The hydrodynamic characteristics of the semi-submersible platform interacting with regular waves are analyzed. Pressure distribution with time and space, tension and compression of the platform under wave action are investigated. 3D behaviors of wave run-ups are predicted. Strong nonlinear phenomena such as wave upwelling and wave interference are observed and analyzed.