• 제목/요약/키워드: hydrodynamic wave forces

검색결과 145건 처리시간 0.029초

Influence of Tether Length in the Response Behavior of Square Tension Leg Platform in Regular Waves

  • El-gamal, Amr R.;Essa, Ashraf
    • International Journal of Ocean System Engineering
    • /
    • 제4권1호
    • /
    • pp.19-28
    • /
    • 2014
  • The tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is regarded as moored structure in horizontal plan, while inherit stiffness of fixed platform in vertical plane. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of tethers length and wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether length, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about that is significantly dependent on tether length.

Structural control of a steel jacket platform

  • Abdel-Rohman, Mohamed
    • Structural Engineering and Mechanics
    • /
    • 제4권2호
    • /
    • pp.125-138
    • /
    • 1996
  • This paper deals with the application of certain active and passive control mechanisms to control the dynamic response of a steel jacket platform due to wave-induced forces. The forces are estimated using the nonlinear Morison equation which provides nonlinear self-excited hydrodynamic forces. The influence of these forces on the response of a structure without and with vibration control mechanisms is demonstrated using a steel jacket platform as a simple example.

Frequency domain analysis of Froude-Krylov and diffraction forces on TLP

  • Malayjerdi, Ebrahim;Tabeshpour, Mohammad Reza
    • Ocean Systems Engineering
    • /
    • 제6권3호
    • /
    • pp.233-244
    • /
    • 2016
  • Tension Leg Platform (TLP) is a floating structure that consists of four columns with large diameter. The diffraction theory is used to calculate the wave force of floating structures with large dimensions (TLP). In this study, the diffraction and Froude-Krylov wave forces of TLP for surge, sway and heave motions and wave force moment for roll, pitch degrees of freedom in different wave periods and three wave approach angles have been investigated. From the numerical results, it can be concluded that the wave force for different wave approach angle is different. There are some humps and hollows in the curve of wave forces and moment in different wave periods (different wavelengths). When wave incidents with angle 0 degree, the moment of diffraction force for pitch in high wave periods (low frequencies) is dominant. The diffraction force for heave in low wave periods (high wave frequencies) is dominant. The phase difference between Froude-Krylov and diffraction forces is important to obtain total wave force.

축대칭 부표의 규칙파중 운동특성에 대한 연구 (A Stuty on the Dynamic Response of an Axisymmetric Buoy in Regular Waves)

  • 홍기용;김효철;최항순
    • 대한조선학회지
    • /
    • 제23권3호
    • /
    • pp.1-9
    • /
    • 1986
  • Herein the dynamic response of an axisymmetric buoy to regular wave is studied within linear potential theory. The buoy has a particular geometry so that it should experience minimum wave-exiting force on the vertical direction at a precribed wave number in water of finite depth. Invoking the Green's theorem a velocity potential is generated by distributing pulsating sources and doublets on the immersed surface of the buoy at its mean position. Hydrodynamic forces and moments are obtained approximately by summation of the products of linear pressure and directional mesh area over the immersed surface. Model tests are carried out to measure the wave-exciting forces, hydrodynamic forces and motion responses. The experimental results in general agree fairly well with the numerical ones. From the analytical and experimental works it is found that the pitching motion and its coupling effect affect significantly the motion characteristics of the freely-floating axisymmetric buoy in regular waves.

  • PDF

약 비선형 파랑에 대한 연직 2차원 부방파제의 동수역학적 해석 (Hydrodynamic Analysis of Two-dimensional Floating Breakwater in Weakly Nonlinear Waves)

  • 이정우;조원철
    • 대한토목학회논문집
    • /
    • 제26권5B호
    • /
    • pp.539-549
    • /
    • 2006
  • 본 연구에서는 포텐셜 이론, 섭동법, 경계요소법에 근간을 둔 이차의 시간영역 수치모델을 개발하고 이를 이용하여 폰툰형 부방파제의 성능을 평가하였다. 다양한 설계조건에 대하여 파력, 운동변위, 자유수면고, 투과율 등의 변화를 고찰하였으며, 파랑의 약 비선형성이 방파제의 동수역학적 특성에 미치는 영향을 분석하는데 주안점을 두었다. 수치모의 수행 결과, 이차의 성분 파는 동유체력, 계류장력, 운동변위에 미치는 영향이 큰 것으로 분석되었으나, 파랑의 약 비선형성이 투과율에 미치는 영향은 매우 작아 선형해석만으로도 파랑제어효율을 평가할 수 있음을 확인하였다. 또한 파랑제어효율이 우수한 수심과 흘수의 비, 파수와 폭과의 관계 등을 제시하였다.

밀도가 상이한 두 유체층에서 부유체 동유체력 특성의 수치적 해석 (Numerical Analysis of Hydrodynamic Forces on a Floating Body in Two-layer Fluids)

  • 김미근;구원철
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.369-376
    • /
    • 2010
  • In this study, a radiation and a diffraction problems of a floating body in two-layer fluids were solved by the Numerical Wave Tank(NWT) technique in the frequency domain. In two-layer fluids, two different wave modes exist and the hydrodynamic coefficients can be obtained separately for each mode. The two-domain Boundary Element Method(BEM) in the potential fluid using the whole-domain matrix scheme was used to investigate the characteristics of wave forces, added mass and damping coefficients. The effects of the ratio of density and water depth in the lower domain were also evaluated and compared with given references.

대진폭 조화 운동을 하는 잠수구에 의한 비선형 조파문제의 시간영역 해석 (Time-Domain Analysis of Nonlinear Wave-Making Problems by a Submerged Sphere Oscillating with Large Amplitude)

  • 김용직;하영록
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.67-74
    • /
    • 2006
  • A high-order spectral/boundary-element method is newly adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time-domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. By the combination of these two methods, the wave-making problems by a submerged sphere oscillating with large amplitude under the free~surface are solved in time-domain. Through the example calculations, nonlinear effects on free-surface profiles and hydrodynamic forces are shown and discussed.

자유수면 밑을 전진하는 세장체에 작용하는 수면흡입력의 추정 (Free Surface Suction Force Acting on a Submerged Slender Body Moving Beneath a Free Surface)

  • 윤범상;담반퉁
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.688-698
    • /
    • 2009
  • In this paper, the steady lift force acting on a slender body moving beneath regular wave systems of arbitrary wavelengths and directions of propagation is considered. The momentum conservation theorem and the strip method are used to obtain the hydrodynamic forces acting on the body and affecting its motions on the assumption that the body is slender. In order to obtain the vertical steady force acting on it, or the free surface suction force, the second-order hydrodynamic forces caused by mutual interactions between the components of the first-order hydrodynamic forces are averaged over time. The validity of the method is tested by comparison of the calculated results with experimental data and found to be satisfactory. Through some parametric calculations performed for a typical model, some useful results are obtained as to the depth of submergence of the body, wavelengths, directions, etc.

Numerical Investigation of Countermeasure Effects on Overland Flow Hydrodynamic and Force Mitigation in Coastal Communities

  • Hai Van Dang;Sungwon Shin;Eunju Lee;Hyoungsu Park;Jun-Nyeong Park
    • 한국해양공학회지
    • /
    • 제36권6호
    • /
    • pp.364-379
    • /
    • 2022
  • Coastal communities have been vulnerable to extreme coastal flooding induced by hurricanes and tsunamis. Many studies solely focused on the overland flow hydrodynamic and loading mechanisms on individual inland structures or buildings. Only a few studies have investigated the effects of flooding mitigation measures to protect the coastal communities represented through a complex series of building arrays. This study numerically examined the performance of flood-mitigation measures from tsunami-like wave-induced overland flows. A computational fluid dynamic model was utilized to investigate the performance of mitigation structures such as submerged breakwaters and seawalls in reducing resultant forces on a series of building arrays. This study considered the effects of incident wave heights and four geometrically structural factors: the freeboard, crest width of submerged breakwaters, and the height and location of seawalls. The results showed that prevention structures reduced inundation flow depths, velocities, and maximum forces in the inland environment. The results also indicated that increasing the seawall height or reducing the freeboard of a submerged breakwater significantly reduces the maximum horizontal forces, especially in the first row of buildings. However, installing a low-lying seawall closer to the building rows amplifies the maximum forces compared to the original seawall at the shoreline.

전진 동요하는 잠수구에 의한 비선형 조파문제의 시간영역 해석 (Time Domain Analysis of Nonlinear Wave-Making Problems by a Submerged Sphere Oscillating with Forward Speed)

  • 하영록;배성용
    • 동력기계공학회지
    • /
    • 제14권6호
    • /
    • pp.75-82
    • /
    • 2010
  • In this study, the topics for free-surface wave simulation, nonlinear hydrodynamic force, and the critical resonance frequency of so-called ${\tau}=U{\omega}/g$=1/4 are discussed. A high-order spectral/boundary element method is newly adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. By the combination of these two methods, the wave-making problems by a submerged sphere oscillating with forward speed under the free-surface are solved in time domain.