• Title/Summary/Keyword: hydraulic interaction

Search Result 178, Processing Time 0.022 seconds

A Study on the Interaction of Segmented Hydraulic Fractures (다중으로 분할된 수압파쇄균열의 상호작용에 관한 연구)

  • Sim Young-Jong;Kim Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.45-52
    • /
    • 2005
  • Recent observations based on geological evidence and laboratory tests confirm that complex segmentation of hydraulic fractures is common phenomena. It is expected that the segmentation causes mechanical interaction between the fractures and affects fracture opening and measured net pressure. In this study, therefore, the opening of the fractures is computed using boundary collocation method to evaluate the mechanical interaction quantitatively. Also, improved boundary collocation method is suggested to evaluate the displacement of the fracture wall accurately and the reliability of this method is confirmed by comparing with that of the finite element method.

Study on Modeling Procedure of Hydraulic Experiment of Coastal Structure Scour at Sea-Bed Using Fluid-structure Interaction (유체-구조 상호작용을 고려한 해안구조물의 해저면 세굴에 대한 조파실험 해석 기법 연구)

  • Kang, Kyoung-Won;Kim, Kee Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.49-53
    • /
    • 2012
  • Coastal structures, constructed for preventing coastal slope erosion, often causes the scour on the boundary between the coastal structure and the sea-bed, which might lead to collapse of coastal structures. To prevent the collapse, the usual upright block type coastal structures can be modified to other forms or systems of coastal structures. To validate the performance of the proposed systems, it is necessary to conduct high cost hydraulic experiments. If numerical modeling can be performed prior to the hydraulic experiments and the performance of the proposed systems is analyzed numerically in advance, the expenses can be reduced significantly by optimizing the number of cases for conducting the experiments. In this study, a fluid-structure interaction analysis procedure is proposed for modeling the hydraulic experiments of costal structures using the finite element package, LS-DYNA. As can be found in the usual hydraulic experiments, fluid velocities of potential scour locations are monitored and analyzed in detail for four types of coastal structures, block, step, trapezoid and rubble mound.

Experimental Study for Hydraulic Characteristics as the Permeable Underlayer Thickness of Rubble mound Structure (사석방파제 투수하부층 두께에 따른 사면상의 수리특성 실험연구)

  • 윤한삼;김종욱;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.40-45
    • /
    • 2002
  • In this study, the effects on hydraulic characteristics are discussed as the permeable underlayer thickness of the rubble mound structure changes. A series of hydraulic experiments were performed and wave run-up, reflection and set-up were investigated. Result indicated that wave run-down was affected by the water out from the permeable underlayer during down-rush. As the thickness increased, relative wave run-up decreased.

Thermal-Hydraulic Analysis Methodology of Nuclear Power Plant Steam Generator (원전 증기발생기 열유동 해석법)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.43-52
    • /
    • 2002
  • This paper presents the numerical methodology of ATHOS3 code for thermal hydraulic analysis of steam generators in nuclear power plant. Topics include porous media approach, governing equations, physical models and correlations for solid-to-fluid interaction and heat transfer, and numerical solution scheme. The ATHOS3 code is applied to the thermal hydraulic analysis of steam generator in the Korea Kori Unit-1 nuclear power plant and the computed results are presented

Effects of Viscosity of Hydraulic Oil on the Performance of Actuator (유압유 점도가 액추에이터 성능에 미치는 영향)

  • Kim, Jin-Hyoung;Han, Su-Min;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Hydraulic actuator is a primary component of the hydraulic valve systems. In this study, the thrust performance of hydraulic actuator was studied with different values of viscosity of hydraulic oil and rod diameter. Numerical analysis was performed using the commercial CFD code, ANSYS with 2-way FSI(Fluid-Structure Interaction) method and $k-{\varepsilon}$ turbulent model. Results show that increase in viscosity of hydraulic oil reduces the thrust of hydraulic actuator. In order to satisfy the output required of the actuator, it is necessary to compensate for the operating pressure. The results of pressure, velocity and thrust efficiency distributions in the hydraulic actuator were graphically depicted.

Hydraulic Characteristics of Permeable Breakwater in relation to the internal Waterlevel Fluctuation (투과성 방파제의 내부수위 변동과 방파제의 수리특성)

  • 윤한삼;전재우;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.46-53
    • /
    • 2002
  • In the study, the interaction characteristics among incident waves, run-up and internal waterlevel at core layer of breakwaters were investigated. The effect of core materials on the internal waterlevel characteristics are also discussed using the results with both regular and irregular wave tests. The main results obtained are as follows; The higher internal waterleve was observed under the permeable breakwater with core layer of the lower permeability than with the higher one. And, the internal waterlevl decreased as far as the distance from the toe. In the irregular wave test, the grouping characteristics of incident waves make large fluctuation of the waterlevel. Especially, breakwaters internal waterlevel appeared to affect the hydraulic characteristics on slope.

Position Control of a Hydraulic System Subjected to Disturbances Using a Variable Structure Controller (가변구조제어기를 이용한 외란을 받는 유압시스템의 위치제어)

  • 박근석;김형의
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.915-921
    • /
    • 2004
  • In this paper, a variable structure controller(VSC) is used to control the position of the hydraulic servo system subjected to unknown disturbances. The system consists of two cylinders, which connected in series. One cylinder executes position control, the other executes force control to generate disturbances. In order to control each cylinder, interaction must be considered between two cylinders because two cylinders are connected in series. Therefore, the controller is designed regarding interaction between two cylinders as disturbances. Performance of the proposed controller was verified through experiments and compared to PID controller. The experiments showed that the proposed controller had a good performance and robustness.

Development of an Electro-hydraulic Soft Zipping Actuator with Self-sensing Mechanism (자가 변위 측정이 가능한 전기-유압식 소프트 지핑 구동기의 개발)

  • Lee, Dongyoung;Kwak, Bokeon;Bae, Joonbum
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.79-85
    • /
    • 2021
  • Soft fluidic actuators (SFAs) are widely utilized in various areas such as wearable systems due to the inherent compliance which allows safe and flexible interaction. However, SFA-driven systems generally require a large pump, multiple valves and tubes, which hinders to develop a miniaturized system with small range of motion. Thus, a highly integrated soft actuator needs to be developed for implementing a compact SFA-driven system. In this study, we propose an electro-hydraulic soft zipping actuator that can be used as a miniature pump. This actuator exerts tactile force as a dielectric liquid contained inside the actuator pressurized its deformable part. In addition, the proposed actuator can estimate the internal dielectric liquid thickness by using its self-sensing function. Besides, the electrical characteristics and driving performance of the proposed system were verified through experiments.

FLUID-STRUCTURE INTERACTION ANALYSIS OF EXTERNAL GEAR PUMP (회전용적형 기어펌프의 유체-구조연동 전산해석)

  • Lee, J.H.;Kim, T.G.;Lee, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.83-85
    • /
    • 2010
  • A hydraulic gear pump is widely used in many industrial applications to provide both high pressure and high flow rate by physical displacement of finite volume of fluid with each revolution. In this study, two dimensional fluid-structure interaction simulation of gear pump flow was carried out to examine detailed complex flow patterns and structural stress distribution on rotors by using a commercial software ADINA. The effect of rotor clearance size on the flow characteristics, specially the temporal variation of velocity and pressure field, which is a main source of flow noise, also was investigated.

  • PDF

EVALUATION OF GROUNDWATER-STREAM INTERACTION IN AN URBAN STREAM, CHEONGGYECHEON, KOREA

  • Hyun Yun-Jung;Kim Yoon-Young;Lee Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.328-331
    • /
    • 2005
  • Cheonggyecheon, covered and Paved with concretes for about more than 50 years, is a losing stream crossing over the downtown of Seoul, Korea. Due to several environmental and economic Problems about the Cheonggyecheon area, the Cheonggyecheon restoration construction has started in 2003. In restoration of Cheonggyecheon, hydraulic barriers are to be installed so as to reduce stream depletion rates for maintaining the stream flow with supplying a certain amount of water. This study evaluates the groundwater-stream interaction by analyzing stream depletion rates of Cheonggyecheon. Results show that significant stream depletion occurs at the up-midstream where the Seoul subway lines are concentrated. Simulation results demonstrate that both horizontal and vertical hydraulic barriers impeding groundwater flow into subway lines are more efficient than a horizontal barrier only for stream depletion rate reduction.

  • PDF