• Title/Summary/Keyword: hydraulic flux

Search Result 200, Processing Time 0.027 seconds

Effects of Surface Water Chemistry and Physicochemical Characteristics of Humic Acid on Fouling of Membrane (원수의 수질화학과 HA의 물리화학적 특성이 막 오염에 미치는 영향)

  • Bae, Jin-Youl;Han, Ihnsup;Park, Sung-Ho;Shin, Jee-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.242-247
    • /
    • 2005
  • In this study, we investigated the removal efficiencies of pollutants and permeate fluxes depending on chemistry of feed water, various molecular weight cut-offs (MWCOs) and materials of membrane, operating pressure. We used seven MWCO membranes of YC0.5, YM1, YM3, YM10, YM30, YM100 and PM30, humic acid solution and surface water as feed water, and examined variation in permeate flux. Results of TOC removal experiment demonstrate that MWCO lower 1,000daltons could remove humic acid effectively. As increasing solution pH and decreasing divalent cations ($Ca^{2+}$) concentration, TOC removal increased. But $UV_{254}$ removal efficiency increased with higher divalent cation concentration and solution pH. Membrane fouling increased with increasing electrolyte (NaCl), divalent cation concentration and decreasing solution pH. In spite of initial permeate flux of the hydrophobic membrane (PM30) was higher than that of the hydrophilic membrane (YM30), flux decline of PM30 was significant during operation. At higher operating pressure, compactness of the cake layer on the membrane surface increased, resulting in gradual increase in hydraulic resistance.

Comparison of the Thermal-Hydraulic Characteristics of Optimised Fuel Assembly with That of Standard Fuel Assembly (최적 핵연료집합체와 표준 핵연료집합체의 열수력학적 특성비교)

  • Paik, Hyun-Jong;Rim, Chang-Saeng;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.66-74
    • /
    • 1990
  • The thermal-hydraulic characteristics of the 17$\times$17 OFA (Optimized Fuel Assembly) used in the KNU 7&8 are analyzed and compared with that of the 17$\times$17 SFA (Standard Fuel Assembly) loaded in the KNU 5&6. The thermal-hydraulic characteristics analyzed are minimum DNBR, fuel centerline temperature and exit void fraction at normal operation and design over power transient. Additionally, local linear rod power, which will cause fuel centerline melting, is calculated. The DNBR sensitivity calculations are performed with respect to the reactor operating parameters. COBRA-IV-I code is used for these calculations. The modified W-3 correltion and the drift-flux model are applied for the critical heat flux calculation and the void fraction calculation, respectively. From the calculated results, it has been found that the possibility of DNB occurrence is higher in the OFA than in the SFA. The other hand, the local linear power resulting in fuel centerline moiling of the OFA is nearly equal to that of the SFA.

  • PDF

Experimental Investigation on Critical Heat Flux in Bilaterally Heated Annulus with equal heat flux on both sides

  • Miao Gui;Junliang Guo;Huanjun Kong;Pan Wu;Jianqiang Shan;Yujiao Peng
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3313-3319
    • /
    • 2023
  • A phenomenological study on CHF in a bilaterally heated annulus with equal heat flux on both sides was experimentally performed. The working fluid of the present test was R-134a. Variation characteristics of CHF and transition of CHF occurrence location were investigated under different pressure, mass flux and quality conditions. With the increase of critical thermodynamic quality, it was found that CHF first occurred on the outer surface of the annulus, then simultaneously occurred on both sides, and finally occurred on the inner surface at relatively high critical quality. After the CHF location transitioned to the inner rod, the sharp fall of CHF in the limiting critical quality region was observed. The critical quality corresponding to the CHF location transition decreased with the increase of mass flux and pressure. Besides, CHF in tube, internally heated, externally heated and bilaterally heated annuli were compared under the same hydraulic diameter conditions. The present study is conducive to improving the understanding of complicated CHF mechanism in bilaterally heated annulus, enriching the experimental database, and providing evidence for developing accurate CHF mechanism model for annuli.

A Study of Flow Condensation Inside Mini-Channels with Circular and Rectangular Cross Section (원형 및 사각단면의 미세채널내 흐름응축 열전달 연구)

  • Shin, Jeong-Seob;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1458-1463
    • /
    • 2004
  • By using unique experimental techniques and careful construction of the experimental apparatus, the characteristics of the local heat transfer were investigated using the condensing R134a two-phase flow, in horizontal single mini-channels. The circular channels ($D_h=0.493$, 0.691, and 1.067 mm) and rectangular channels ($D_h=0.494$, 0.658, and 0.972 mm) were tested and compared. Tests were performed for a mass flux of 100, 200, 400, and 600 $kg/m^2s$, a heat flux of 5 to 20 $kW/m^2$, and a saturation temperature of $40^{\circ}C$. In this study, effect of heat flux, mass flux, vapor qualities, hydraulic diameter, and channel geometry on flow condensation were investigated and the experimental local condensation heat transfer coefficients are shown. The experimental data of condensation Nusselt number are compared with existing correlations.

  • PDF

Thermal-hydraulic safety analysis of radioisotope production in HANARO using MCNP6 and COMSOL multiphysics: A feasibility study

  • Taeyun Kim;Bo-Young Han;Seongwoo Yang;Jaegi Lee ;Gwang-Min Sun;Byung-Gun Park;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3996-4001
    • /
    • 2023
  • The High-flux Advanced Neutron Application Reactor (HANARO) produces radioisotopes (RIs) (131I, 192Ir, etc.) through neutron irradiation on various RI production targets. Among them, 177Lu and 166Ho are particularly promising owing to their theranostic characteristics that facilitate simultaneous diagnosis and treatment. Prior to neutron irradiation, evaluating the nuclear heating of the RI production target is essential for ensuring the thermal-hydraulic safety of HANARO. In this study, the feasibility of producing 177Lu and 166Ho using irradiation holes of HANARO was investigated in terms of thermal-hydraulic safety. The nuclear heating rates of the RI production target by prompt and delayed radiation were calculated using MCNP6. The calculated nuclear heating rates were used as an input parameter in COMSOL Multiphysics to obtain the temperature distribution in an irradiation hole. The degree of temperature increase of the 177Lu and 166Ho production targets satisfied the safety criteria of HANARO. The nuclear heating rates and temperature distribution obtained through the in silico study are expected to provide valuable insight into the production of 177Lu and 166Ho using HANARO.

Numerical Simulation of Hydraulic Jump (도수의 수치 모의)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.749-762
    • /
    • 2023
  • A depth-integrated model with an approximate Riemann solver for flux computation of the shallow water equations was applied to hydraulic jump experiments. Due to the hydraulic jump, different flow regimes occur simultaneously in a single channel. Therefore, the Weisbach resistance coefficient, which reflects flow conditions rather than the Manning roughness coefficient that is independent of depth or flow, has been employed for flow resistance. Simulation results were in good agreement with experimental results, and it was confirmed that Manning coefficients converted from Weisbach coefficients were appropriately set in the supercritical and subcritical flow reaches, respectively. Limitations of the shallow water equations that rely on hydrostatic assumptions have been revealed in comparison with hydraulic jump experiments, highlighting the need for the introduction of a non-hydrostatic shallow-water flow model.

Swelling and Relative Hydraulic Conductivities of transformed Ca-bentonite with various Na-cemicals

  • Chung Doug-Young;Lee Kyo-S.;Lee Dong-S.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.220-223
    • /
    • 2006
  • To investigate the effect of solution pH and particle size of Na-bentonite on swelling characteristics and relative hydraulic conductivity, four kinds of acids and two alkali were selected. The results showed that the swelling was decreased to half of the original Na-bentonite's swelling index. Also the decrease in SI was most distinctive in pH 3.5 of HCl. But changes of swelling index between initial and stabilized were minimal in alkali treatment, compared to the change by acid treatment. No flux was detected under atmospheric pressure although there was drastic decrease in swelling. However, leaching started after application of 1.5 bars of air-pressure equivalent to 15 m of water head.

  • PDF

Design of High Speed Solenoid Actuator for Hydraulic Servo Valve Operation

  • Sung, Baek-Ju;Kim, Do-Sik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.239-245
    • /
    • 2013
  • Modern electric controlled valves are demanded that its solenoid actuator should be smaller size, lighter weight, lower consumption power, and higher response time. For achieving these purposes, the major design factors of solenoid actuator such as magnetic flux density, coil turn numbers, plunger size, bobbin dimension, and etc. are must be optimized. In this study, for optimal design of high speed solenoid actuator for hydraulic servo valve operation, we draw up governing equations which are composed by combination of electromagnetic theories and empirical knowledge, and deduct the values of major design factors by use of them. For more increase the operating speed, voice coil are used as main armature in manufacturing of prototype actuator. And, we have proven the propriety of the governing equations and speed increasing method by experiments using the hydraulic valve assembly adopted the prototype of solenoid actuator.

Characteristic Analysis of the Cooling System Using Ice Slurry Type Heat Storage System (아이스슬러리형 빙축열 시스템을 이용한 냉각 시스템의 성능에 관한 실험적 연구)

  • Lee, Dong-Won;Kim, Jeong-Bae
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • To clarify the hydraulic and thermal characteristics of ice slurry which made from 6.5% ethylene glycol-water solution flow in the double tube and plate type heat exchanger, experimental studies were performed. The mass flux and ice fraction of ice slurry were varied from 800 to 3500 kg/$m^2s$(or 7 to 17 kg/min) and from 0 to 25%, respectively. Through the experiment, it was found that the measured pressure drop and heat transfer rate increase with the mass flux and ice fraction; however the effect of ice fraction appears not to be significant at high mass flux region. At the region of low mass flux, a sharp increase in the pressure drop and heat transfer rate were observed depends on mass flux.

A Study on Transport and Heat Utilization of Ice Slurries (아이스 슬러리의 수송 및 냉열이용에 관한 연구)

  • 길복임;이윤표;정동주;조봉현;최은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1065-1071
    • /
    • 2001
  • To investigate hydraulic and thermal characteristics of ice slurries in a circular tube, ice slurries were tested in a flow loop with a constant heat flux test section, for ranges of flow velocity, ice fraction and heat flux. Heat transfer coefficients and friction factors of ice slurries were calculated by measuring the outer wall temperatures of the test section and the pressure drops over the test section. Heat transfer coefficients of ice slurries were 9% higher than the heat transfer coefficients expected by Petukhov. Friction factors were about 4% lower than the friction factors expected by Petukhov. The effective thermal capacity of ice slurry with 12.8% ice fraction, was found to be about 3 times higher than the thermal capacity of water.

  • PDF