• Title/Summary/Keyword: hydraulic conditions

Search Result 1,248, Processing Time 0.029 seconds

Experimental Study on Internal Flow of a Mini Centrifugal Pump by PIV Measurement

  • Wu, Yulin;Yuan, Huijing;Shao, Jie;Liu, Shuhong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.121-126
    • /
    • 2009
  • The internal flow field in a centrifugal pump working at the several flow conditions has been measured by using the particle image velocimetry (PIV) technique with the laser induced fluorescence (LIF) particles and the refractive index matched (RIM) facilities. The impeller of the centrifugal pump has an outlet diameter in 100mm, and consists of six two-dimensional curvature backward swept blades of constant thickness. Measured results give reliable flow patterns in the pump. It is obvious that application of LIF particle and RIM are the key methods to obtain the right PIV measured results in pump internal flow.

Improvement of a Hydraulic Circuit for an Electro-Hydrostatic Actuator Equipped with a Single Rod Cylinder (편로드 실린더 구동 EHA의 유압 회로 개선)

  • Hong, Yeh-Sun;Kim, Sang-Seok;Kim, Dae-Hyun;Kim, Sang-Beom;Park, Sang-Joon;Choi, Kwan-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The conventional hydraulic circuits for electro-hydrostatic actuators equipped with a single-rod cylinder can oscillate under overrunning load conditions. In this paper the oscillation problem encountered in the conventional hydraulic circuits for EHAs is analyzed and it is shown by simulation results that this problem can be solved by employing a counter balance valve instead of a pilot-operated check valve generally used in the conventional hydraulic circuits.

Proper Conditions of Structure to Prevent Eddy Creation in Cooling Water Intake Canal of Stream Power Plant (화력발전소 냉각 취수로내의 와류발생 방지를 위한 구조물의 적정조건검토)

  • 조진훈;천만복
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.465-472
    • /
    • 1999
  • Hydraulic model tests are performed to find economical and hdrqulically stable design of cooling water intake channel of steam power plant. The result of tests show that the standard distributiion of y-components in the chamber of CWP(circulating Water Pump) are recommended below 3.5 to maintain hydraulic stability, so that this value is considered as the design criteria. Common basin is necessary to improve the hydraulic stability of inflow, however the longer basin does not always improve the hydraulic stability , and the optimal length of basin can be found in some range. From the results the flow stability maintained the best condition when the length of basin is 7.2m. Beside the standard tests the auxiliary tests like edge , baffle, trapezoidal section and increase of pump capacity are carried out based on the optimal condition foudn in the standard tests. From the series of tests the economical and hydraulically stable design of intake channel was proposed.

  • PDF

Cavitation inception in oil hydraulic pipeline (유압관로에서의 캐비테이션 초생)

  • 이일영;염만오;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.46-52
    • /
    • 1988
  • The cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below-1 MPa(absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. In order to interpret the experimental results on cavitation inception, the growth of a spherical bubble in viscous compressible fluid due to a stepwise pressure drop was investigated by numerical analysis, and the critical bubble radius was obtained. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised conditions about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

  • PDF

Modeling and $H_{\infty}$ Optimal Control Design for a Hydraulic Unit in ESP (ESP 유압 유니트의 모델링 및 $H_{\infty}$ 최적제어)

  • You, Seung-Han;Hahn, Jin-Oh;Cho, Young-Man;Lee, Kyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.733-738
    • /
    • 2004
  • This paper deals with feedback control of a hydraulic unit for direct yaw moment control, a method used to actively maintain the dynamic stability of an automobile. The uncertain parameters and complex structure naturally call for empirical modeling of the hydraulic unit, which readily results in a control-oriented model with high fidelity. The identified model is cross-validated against experimental data under various conditions, which helps to establish model uncertainty. Then, the $H_{\infty}$ optimization technique is employed to synthesize a controller with guaranteed robust stability and performance against the model uncertainty. The performance of the synthesized controller is verified using experimental results, which shows the viability of the proposed approach in a real-world application.

  • PDF

Robust Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_\infty$Framework ($H_\infty$구조의 외란 관측기를 이용한 유압 굴삭기의 강인한 궤적 제어)

  • 최종환;김승수;양순용;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.130-140
    • /
    • 2003
  • This paper presents an $H_\infty$controller synthesis based on disturbance observer for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, hydraulic excavator have more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_\infty$frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.

Experiments for the Characteristic Evaluation of Pollutant Transport in Tidal Influenced Region (조파역내 오염물 이동특성 평가 실험)

  • Park, Geon Hyeong;Kim, Ki Chul;Jung, Sung Hee;Suh, Kyung Suk
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.391-395
    • /
    • 2010
  • The characteristics for pollutant transport in tidal influenced area was investigated using tidal wave hydraulic scale model. Hydraulic scale model was composed of the tidal generator, attenuation area and channel. Also, wave height, current meter and conductivity meter were used with the measured instruments in hydraulic scale model. NaCl with a tracer was used to evaluate the advection phenomena under the different velocity profiles. The arrival time of the maximum concentration in the condition of the relatively fast velocity was measured about 30 seconds faster than ones in the conditions of low velocity. The measured concentrations of the tracer were shown in the detection points of the flow direction consecutively.

Integrated System of RBC-lime Precipiatation for Simultaneous Removal of Organics and Nutrients (회전원판공정과 화학침전공정 조합을 이용한 유기물과 질소*인의 동시제거)

  • 박종안;허준무;손부순
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.132-140
    • /
    • 1998
  • Laboratory-scale experiments were conducted using a three-stage rotating biological contactor unit followed by lime precipitation and sedimentation with effluent recycle to the first stage. The purpose of this study was to evaluate the effects of hydraulic loadings of 0.031-0.076 $m^3/m^2/d and recycle ratio of 1 to 3 on the simultaneous removal of organics and nutrients from domestic wastewater. Lime was added to maintain pH of 10.4-11.0 in the coagulation-flocculation reactor. Results showed that the highest nitrogen removal rate of 70.5% occurred at the lower hydraulic loading of 0.031 $m^3/m^2/d at a recirculation rate of 300%, and similarly, highest nitrification occurred at the same hydraulic loading and recycle ratio. Concentration of ammonia nitrogen in the effluent was less than 1 mg/l at the same operating conditions for higher nitrogen removal. Whereas, high BOD and COD removal was observed at hydraulic loading rate of 0.054 $m^3/m^2/d, and high removal of organic matter was evident from the consistent low COD and BOD value. Results obtained from the operating condition of higher loading rate, 300% of recycle rate showed the highest removals. Increasing in recycle rate and hydraulic loading rate increased the volatile solids fraction of the sludges generated to the extent of 47% at 0.076 $m^3/m^2/d hydraulic loading and 300% recirculation rate. Since pH in the flocculator was maintained at the pH of 10.4-11.0, above 90% removal of phosphorus was obtained. Average concentration of suspended solids was always maintained over 40 mg/l in the effluent. Therefore an RBC unit operating at a hydraulic loading near 0.031 $m^3/m^2/d with a recycle rate of 300% is a viable and feasible alternate conditions to produce an effluent with relative low organic matter and phosphorus, provided that there is a neutralization unit to control the pH and SS of the effluent.

  • PDF

Study of Wear Characteristics of Hydraulic Equipment Used in Power Plants (발전소용 유압기기의 마모특성 연구)

  • Lee, Yong Bum;Lee, Gi Chun;Chang, Mu Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1183-1188
    • /
    • 2013
  • The reliability of hydraulic equipment used in power plants is especially important because failures that occur in the power plant can have a great ripple effect on human lives and financial losses. In this study, specimens using the materials used in the spool and sleeve of hydraulic valves of power plants have been produced, heat-treated, and tested under the precipitation conditions of phosphate ester hydraulic fluid with a variety of conditions. 23 full factorial designs have been applied to evaluate the significance of factors that affect the wear loss of the specimen, specifically, the load, velocity, and temperature. The significance evaluation was performed on the main effects and two-way interactions for wear loss based on the experiment results, and the mathematical equations between the wear loss and the three factors were derived from the analysis results.

A Study of Probabilistic Groundwater Flow Modeling Considering the Uncertainty of Hydraulic Conductivity (수리전도도의 불확실성을 고려한 확률론적 지하수 유동해석에 관한 연구)

  • Ryu Dong-Woo;Son Bong-Ki;Song Won-Kyong;Joo Kwang-Soo
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.145-156
    • /
    • 2005
  • MODFLOW, 3-D finite difference code, is widely used to model groundwater flow and has been used to assess the effect of excavations on the groundwater system due to construction of subways and mountain tunnels. The results of numerical analysis depend on boundary conditions, initial conditions, conceptual models and hydrogeological properties. Therefore, its accuracy can only be enhanced using more realistic and field oriented input parameters. In this study, SA(simulated annealing) was used to integrate hydraulic conductivities from a few of injection tests with geophysical reference images. The realizations of hydraulic conductivity random field are obtained and then groundwater flows in each geostatistically equivalent media are analyzed with a numerical simulation. This approach can give probabilistic results of groundwater flow modeling considering the uncertainty of hydrogeological medium. In other words, this approach makes it possible to quantify the propagation of uncertainty of hydraulic conductivities into groundwater flow.