• Title/Summary/Keyword: hybrid-composite

Search Result 1,054, Processing Time 0.03 seconds

Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes

  • Asteris, Panagiotis G.;Lemonis, Minas E.;Nguyen, Thuy-Anh;Le, Hiep Van;Pham, Binh Thai
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.471-491
    • /
    • 2021
  • In this study, we estimate the ultimate load of rectangular concrete-filled steel tubes (CFST) by developing a novel hybrid predictive model (ANN-BCMO) which is a combination of balancing composite motion optimization (BCMO) - a very new optimization technique and artificial neural network (ANN). For this aim, an experimental database consisting of 422 datasets is used for the development and validation of the ANN-BCMO model. Variables in the database are related with the geometrical characteristics of the structural members, and the mechanical properties of the constituent materials (steel and concrete). Validation of the hybrid ANN-BCMO model is carried out by applying standard statistical criteria such as root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE). In addition, the selection of appropriate values for parameters of the hybrid ANN-BCMO is conducted and its robustness is evaluated and compared with the conventional ANN techniques. The results reveal that the new hybrid ANN-BCMO model is a promising tool for prediction of the ultimate load of rectangular CFST, and prove the effective role of BCMO as a powerful algorithm in optimizing and improving the capability of the ANN predictor.

Hybrid simulation tests of high-strength steel composite K-eccentrically braced frames with spatial substructure

  • Li, Tengfei;Su, Mingzhou;Guo, Jiangran
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.381-397
    • /
    • 2021
  • Based on the spatial substructure hybrid simulation test (SHST) method, the seismic performance of a high-strength steel composite K-eccentrically braced frame (K-HSS-EBF) structure system is studied. First, on the basis of the existing pseudostatic experiments, a numerical model corresponding to the experimental model was established using OpenSees, which mainly simulated the shear effect of the shear links. A three-story and five-span spatial K-HSS-EBF was taken as the prototype, and SHST was performed with a half-scale SHST model. According to the test results, the validity of the SHST model was verified, and the main seismic performance indexes of the experimental substructure under different seismic waves were studied. The results show that the hybrid simulation results are basically consistent with the numerical simulation results of the global structure. The deformation of each story is mainly concentrated in the web of the shear link owing to shear deformation. The maximum interstory drifts of the model structure during Strength Level Earthquake (SLE) and Maximum Considered Earthquake (MCE) meet the demands of interstory limitations in the Chinese seismic design code of buildings. In conclusion, the seismic response characteristics of the K-HSS-EBFs are successfully simulated using the spatial SHST, which shows that the K-HSS-EBFs have good seismic performance.

Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

  • Kim, Dave Dae-Wook;Hennigan, Daniel John;Beavers, Kevin Daniel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP) composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented dining composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

Fire Resistance of U-shape Hybrid Composite Beam (신형상 U형 하이브리드 합성보의 내화성능에 관한 연구)

  • Kim, Sung Bae;Kim, Sang Seup;Ryu, Deog Su;Choi, Seng Kwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.379-388
    • /
    • 2013
  • This paper aims to experimentally investigate the fire resistance of U-shaped hybrid composite beams protected by spay and paint insulations. Subjected to two and three hours of the Standard ISO fire, the flexural performance of 4.4m beams with/without imposed loadings was examined with respect to failure criteria such as deflection and deflection rate of the mid-span and temperatures measured in the steel section. The results demonstrated that the proposed configuration of the composite beam is able to achieve a very competitive 3-hour fire resistance rating in economical aspects.

A Study of the FE Analysis Technique of Hybrid Blades for Large Scale Wind-Turbine (대형 풍력발전기용 하이브리드형 블레이드 구조해석)

  • Kang, Byong-Yun;Kim, Yun-Hae;Kim, Do-Wan;Kim, Myung-Hun;Han, Jeong-Young;Hong, Cheol-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2011
  • According to recent figures, 35% of the world's blades are made using prepreg blades, by Vestas and Gamesa. They are the most advanced in the market today. In this study, we investigated the validity of the finite element method (FEM) applied to an FE analysis of a hybrid composite wind-turbine blade. Two methods were suggested for a composite FE analysis: using the equivalent properties of the composite or using stacking properties. FE analysis results using the stacking properties of the composite were in good agreement with results of using the equivalent properties. The difference between FE results was approximately 0.6~13.3%.

A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates

  • Vosoughi, Ali R.;Malekzadeh, Parviz;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.509-516
    • /
    • 2018
  • The differential quadrature (DQ) and teaching-learning based optimization (TLBO) methods are coupled to introduce a hybrid numerical method for maximizing fundamental natural frequency of laminated composite skew plates. The fiber(s) orientations are selected as design variable(s). The first-order shear deformation theory (FSDT) is used to obtain the governing equations of the plate. The equations of motion and the related boundary conditions are discretized in space domain by employing the DQ method. The discretized equations are transferred from the time domain into the frequency domain to obtain the fundamental natural frequency. Then, the DQ solution is coupled with the TLBO method to find the maximum frequency of the plate and its related optimum stacking sequences of the laminate. Convergence and applicability of the proposed method are shown and the optimum fundamental frequency parameter of the plates with different skew angle, boundary conditions, number of layers and aspect ratio are obtained. The obtained results can be used as a benchmark for further studies.

Fabrication of Carbon/Basalt Hybrid Composites and Evaluation of Mechanical Properties (탄소/현무암 섬유강화 하이브리드 복합재료의 성형과 기계적 특성 평가)

  • Lee, Jin-Woo;Kim, Yun-Hae;Jung, Min-Kyo;Yoon, Sung-Won;Park, Jun-Mu
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • Carbon Fiber Reinforced Plastic (CFRP) has strong and superb material properties, especially in mechanical and heat-resisting aspects, but the drawback is its high price. In this study, we made a hybrid composite using carbon fiber and basalt fiber, which is expected to attribute to its strong material properties and its financial benefits. We found out that the higher the content of basalt fiber included, the lower the intensity, and carbon's intensity contents of 80% showed the similar intensity level as that of CFRP. Besides it was possible to get a better mechanical properties using the composite that included the mixed fiber, instead of using a composition of separate fibers filed.

Development of Hybrid FRP-Concrete Composite Pile Connection (하이브리드 FRP-Concrete 복합말뚝의 연결부의 개발)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.52-57
    • /
    • 2014
  • Due to the advantageous mechanical properties of the fiber reinforced polymeric plastics(FRP), their application in the construction industries is ever increasing trend, as a substitute of structural steel which is highly vulnerable under hazardous environmental conditions (i.e., corrosion, humidity, etc.). In this study, hybrid FRP-concrete composite pile (HCFFT) connection is suggested. The HCFFT is consisted of pultruded FRP unit module, filament wound FRP which is in the outside of mandrel composed of circular shaped assembly of pultruded FRP unit modules, and concrete which is casted inside of the circular tube shaped hybrid FRP pile. Therefore, pultruded FRP can increase the flexural load carrying capacity, filament wound FRP and concrete filled inside can increase axial load carrying capacity. In the study, connection capacity of HCFFT(small and mid size) is investigated throughout experiments and finite element method. From the results of experiments, we suggested the connection methods about HCFFT pile connection.

Development of jute rope hybrid composite plate using carbon fibre

  • Nouri, Karim;Alam, Md. Ashraful;Mohammadhassani, Mohammad;Jumaat, Mohd Zamin Bin;Abna, Amir Hosein
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1095-1113
    • /
    • 2015
  • Jute rope is one of the most popular materials used for composites in various industries and in civil engineering. This experimental study investigated two types of jute rope with different diameters for jute rope composite plates to determine the best combination of jute rope and carbon fiber in terms of ratio and physical and mechanical properties. Eight combinations of carbon fiber and jute rope with different percentages of carbon fiber were analyzed. Tensile tests for the jute rope composite plate and hybrid jute rope composite were conducted, and the mechanical and physical properties of the specimens were compared. Thereafter, the ideal combinations of jute rope with an optimum percentage of carbon fiber were identified and recommended. These particular combinations had tensile strengths that were 2.23 times and 1.76 times higher than other varieties in each type.

Synergistic effect of clay and polypropylene short fibers in epoxy based ternary composite hybrids

  • Prabhu, T. Niranjana;Demappa, T.;Harish, V.;Prashantha, K.
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.97-111
    • /
    • 2015
  • Polypropylene short fiber (PP)-clay particulate-epoxy ternary composites were prepared by reinforcing PP short fiber and clay particles in the range of 0.1 phr to 0.7 phr into epoxy resin. Prepared hybrid composites were characterized for their mechanical, thermal and flame retardant properties. The obtained results indicated an increase in impact resistance, tensile strength, flexural strength and Young's modulus to an extent (up to 0.5 phr clay and 0.5 phr PP short fiber) and then decreases as the reinforcing phases are further increased. The thermal stability of these materials are found to increase up to 0.2 phr clay and 0.2 phr PP addition, beyond which it is decreased. Addition of clay is found to have the negative effect on epoxy-PP short fiber composites, which is evident from the comparison of mechanical and thermal properties of epoxy-0.5 phr PP short fiber composite and epoxy-0.5 phr PP short fiber-0.5 phr clay composite hybrid. UL-94 tests conducted on the composite hybrids have showed a reduction in the burning rate. Morphological observations indicated a greater fiber pull with the addition of clay. The performed tests in the present study indicated that materials under investigation have promising applications in construction, agriculture and decorative purposes.