• Title/Summary/Keyword: hybrid section

Search Result 248, Processing Time 0.027 seconds

The Bearing Strength of Connections Between Steel Coupling Beam and Reinforced Concrete Shear Walls

  • Yun, Hyun Do;Park, Wan Shin;Han, Min Ki;Kim, Sun Woo;Kim, Yong Chul;Hwang, Sun Kyung
    • Architectural research
    • /
    • v.7 no.1
    • /
    • pp.27-38
    • /
    • 2005
  • No specific guidelines are available for computing the bearing strength of connection between steel coupling beam and reinforced concrete shear wall in a hybrid wall system. There were carried out analytical and experimental studies on connection between steel coupling beam and concrete shear wall in a hybrid wall system. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i.e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The proposed equations in this study were in good agreement with both our test results and other test data from the literature.

Performance Improvement of an INS by using a Magnetometer with Pedestrian Dynamic Constraints

  • Woyano, Feyissa;Park, Aangjoon;Lee, Soyeon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This paper proposes to improve the performance of a strap down inertial navigation system using a foot-mounted low-cost inertial measurement unit/magnetometer by configuring an attitude and heading reference system. To track position accurately and for attitude estimations, considering different dynamic constraints, magnetic measurement and a zero velocity update technique is used. A conventional strap down method based on integrating angular rate to determine attitude will inevitably induce long-term drift, while magnetometers are subject to short-term orientation errors. To eliminate this accumulative error, and thus, use the navigation system for a long-duration mission, a hybrid configuration by integrating a miniature micro electromechanical system (MEMS)-based attitude and heading detector with the conventional navigation system is proposed in this paper. The attitude and heading detector is composed of three-axis MEMS accelerometers and three-axis MEMS magnetometers. With an absolute algorithm based on gravity and Earth's magnetic field, rather than an integral algorithm, the attitude detector can obtain an absolute attitude and heading estimation without drift errors, so it can be used to adjust the attitude and orientation of the strap down system. Finally, we verify (by both formula analysis and from test results) that the accumulative errors are effectively eliminated via this hybrid scheme.

NUMERICAL STUDY OF VARIABLE GEOMETRY NOZZLE FLOW USING A MESH DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 격자 변형 기법을 이용한 가변노즐 유동 해석)

  • Kim, J.W.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 2013
  • In the present study, unsteady flow simulations of a variable geometry nozzle were conducted using a two-dimensional flow solver based on hybrid unstructured meshes. The variable geometry nozzle is used to achieve efficient performances of aircraft engines at various operating conditions. To describe the motion of the variable geometry nozzle, an algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements. A ball-vertex spring analogy was used for inviscid elements. The aerodynamic data were obtained for a range of nozzle pressure ratios, and the validations were made by comparing the present results with available experimental data. The unsteady nozzle flows were simulated with an oscillating diverging section and a converging-diverging section. It was found that the nozzle performances are influenced by the nozzle exit flow characteristics, mass flow rate, as well as unsteady effects. These unsteady effects are shown to behave differently depending on the frequency of the nozzle motion.

2018 심방세동 카테터 절제술 대한민국 진료지침: PART III

  • Lee, Jeong-Myeong;Jeong, Dong-Seop;Yu, Hui-Tae;Park, Hyeong-Seop;Sim, Jae-Min;Kim, Ju-Yeon;Kim, Jun;Yun, Nam-Sik;O, Se-Il;No, Seung-Yeong;Jo, Yeong-Jin;Kim, Ki-Hun
    • International Journal of Arrhythmia
    • /
    • v.19 no.3
    • /
    • pp.285-339
    • /
    • 2018
  • Catheter ablation of atrial fibrillation (AF) is one of the most complex interventional electrophysiological procedures. The success of AF ablation is based in large part on freedom from AF recurrence based on electrocardiography (ECG) monitoring. Arrhythmia monitoring can be performed with the use of noncontinuous or continuous ECG monitoring tools. AF ablation is an invasive procedure that entails risks, most of which are present during the acute procedural period. However, complications can also occur in the weeks or months following ablation. Recognizing common symptoms after AF ablation and distinguishing those that require urgent evaluation and referral to an electrophysiologist is an important part of follow-up after AF ablation. This section reviews the complications associated with catheter ablation procedures performed to treat AF. The types and incidence of complications are presented, their mechanisms are explored, and the optimal approach to prevention and treatment is discussed. Finally, surgical and hybrid AF ablation technology and the indications for concomitant open or closed surgical ablation of AF, stand-alone and hybrid surgical ablation of AF are covered in this section.

Seismic behavior of steel reinforced concrete (SRC) T-shaped column-beam planar and 3D hybrid joints under cyclic loads

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.555-572
    • /
    • 2015
  • This paper presents an experimental study of three two-dimensional (2D/planar) steel reinforced concrete (SRC) T-shaped column-RC beam hybrid joints and six 3D SRC T-shaped column-steel beam hybrid joints under low cyclic reversed loads. Considering different categories of steel configuration types in column cross section and horizontal loading angles for the specimens were selected, and a reliable structural testing system for the spatial loading was employed in the tests. The load-displacement curves, carrying capacity, energy dissipation capacity, ductility and deformation characteristics of the test subassemblies were analyzed. Especially, the seismic performance discrepancies between planar hybrid joints and 3D hybrid joints were intensively compared. The failure modes for planar loading and spatial loading observed in the tests showed that the shear-diagonal compressive failure was the dominating failure mode for all the specimens. In addition, the 3D hybrid joints illustrated plumper hysteretic loops for the columns configured with solid-web steel, but a little more pinched hysteretic loops for the columns configured with T-shaped steel or channel-shaped steel, better energy dissipation capacity & ductility, and larger interlayer deformation capacity than those of the planar hybrid joints. Furthermore, it was revealed that the hysteretic loops for the specimens under $45^{\circ}$ loading angle are generally plumper than those for the specimens under $30^{\circ}$ loading angle. Finally, the effects of steel configuration type and loading angle on the seismic damage for the specimens were analyzed by means of the Park-Ang model.

Experimental Study on Pressure Loss of Flow Parallel to Rod Bundle with Spacer Grid (지지격자가 있는 봉다발과 축방향으로 평행한 유동의 압력손실에 관한 실험적 연구)

  • Lee, Chi-Young;Shin, Chang-Hwan;Park, Ju-Yong;In, Wang-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.689-695
    • /
    • 2012
  • The friction factor in a rod bundle and the loss coefficient at a spacer grid were examined. As a test section, 25 smooth rods, 9.5 mm in diameter and 2000 mm in length, were prepared and installed in a $5{\times}5$ square array in a square channel. In this case, the P/D (Pitch-to-Diameter ratio) was 1.35. In this work, plain (i.e., no mixing vanes), split-vane, and hybrid-vane spacer grids were tested. In a bare rod bundle (i.e., no spacer grid), the measured friction factors were in good agreement with the previous correlations. Among the spacer grids tested, the hybrid-vane spacer grid presented the largest friction factor in the rod bundle and loss coefficient. This may be because of the flow pattern change induced by large relative plugging of the flow cross section and mixing vane geometry. At Re=$5{\times}10^5$, the predicted loss coefficients of plain, splitvane, and hybrid-vane spacer grids were approximately 0.79, 0.80, and 0.88, respectively.

Hybrid Scheduling Algorithm based on DWDRR using Hysteresis for QoS of Combat Management System Resource Control

  • Lee, Gi-Yeop
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • In this paper, a hybrid scheduling algorithm is proposed for CMS(Combat Management System) to improve QoS(Quality of Service) based on DWDRR(Dynamic Weighted Deficit Round Robin) and priority-based scheduling method. The main proposed scheme, DWDRR is method of packet transmission through giving weight by traffic of queue and priority. To demonstrate an usefulness of proposed algorithm through simulation, efficiency in special section of the proposed algorithm is proved. Therefore, We propose hybrid algorithm between existing algorithm and proposed algorithm. Also, to prevent frequent scheme conversion, a hysteresis method is applied. The proposed algorithm shows lower packet loss rate and delay in the same traffic than existing algorithm.

Load carrying capacity of Structural Composite Hybrid System (Green Frame) (철골 프리캐스트 콘크리트 합성보 성능 분석 연구)

  • Hong, Won-Kee;Kim, Sun-Kuk;Kim, Seung-Il
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • An experimental investigation of composite beams composed of wide flange steel and precast concrete is presented. The bottom flange of the steel section is encased in precast concrete. The composite beams tested in this study were designed to reduce the depth of the slab and beam. The slabs are constructed on top of the edges of the Structural Composite Hybrid System, instead of on top of the steel flange, decreasing the depth of the beams. When concrete is cast on the metal deck plate located on the edges of the precast concrete, the weight of the concrete slabs and other construction loads must be supported by the contacts between the steel and the precast concrete. This interface must not exhibit bearing failures, shear failures, and failures caused by torque due to the loading of the precast concrete. When the contact area between the concrete and the bottom flange of the steel beam is small, these failures of the concrete are likely and must be prevented. The premature failure of precast concrete must not also be present when the weight of the concrete slabs and other construction loads is loaded. This paper presents a load carrying capacity of Structural Composite Hybrid System in order to observe the failure mode. The symmetrically distributed loading that caused the failure of the composite beam was found. The paper also provides design recommendations of such type of composite structure.

Stress Relaxation Coefficient Method for Concrete Creep Analysis of Composite Sections (합성단면의 콘크리트 크리프 해석을 위한 이완계수법)

  • Yon, Jung-Heum;Kyung, Tae-Hyun;Kim, Da-Na
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.77-86
    • /
    • 2011
  • The concrete creep deformation of a hybrid composite section can cause additional deformation of the composite section and the stress relaxation of pre-compressive stress on the concrete section due to partial restraint of the deformation. In this study, the stress relaxation coefficient method (SRCM) is derived for simple analysis of complicate hybrid or composite sections for engineering purpose. Also, an equation of the stress relaxation coefficient (SRC) required for the SRCM is proposed. The SRCM is derived with the parameters of a creep coefficient, section and loading properties using the same method as the constant-creep step-by-step method (CC-SSM). The errors of the SRCM is improved by using the proposed SRC equation than the average SRC's which were estimated from the CC-SSM. The root mean square error (RMSE) of the SRCM with the proposed SRC equation for concrete with creep coefficient less than 3 was less than 1.2% to the creep deformation at the free condition and was 3.3% for the 99% reliability. The proposed SRC equation reflects the internal restraint of composite sections, and the effective modulus of elasticity computed with the proposed SRC can be used effectively to estimate the rigidity of a composite section in a numerical analysis which can be applied in analysis of the external restrain effect of boundary conditions.

Prediction and Verification of the Twist Deformation of Automotive Structure Parts after Hybrid Welding Using CAE (CAE 를 통한 하이브리드 용접 후 차체부품 변형예측 및 검증)

  • Lee, Dug-Young;Choi, Bo-Sung;Choi, Won-Ho;Ahn, Jang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.87-95
    • /
    • 2012
  • In recent years, laser-arc hybrid welding has begun to be adopted for assembly welding of automotive bodies and parts, because the hybrid welding process can weld lapped steel sheets having a larger gap than is possible with laser welding. In this paper, to predict the twist deformation by the hybrid welding when brackets are welded in B pillar of a passenger car, the residual stress using CAE is analyzed and the deformation result of CAE is compared with the measured deformation. First of all, after modeling heat source as intended to be expressed with laser-arc hybrid welding method, heat source fitting is done with welding conditions and a section of welding part obtained through specimen test. In case of heat source functions, laser used conical source and arc used double ellipsoid source. Through the local model analysis, elements which are located in the center of the model are selected. The elements are called WME(Welding Macro Element). This WME is extruded in the welding lines and welding phenomenon of complex parts is accomplished. The deformation amount after hybrid welding is got through a simulation, the validity of simulation is verified by measuring the panel and comparing with the simulation result.