• Title/Summary/Keyword: hybrid predictive model

Search Result 66, Processing Time 0.027 seconds

Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes

  • Asteris, Panagiotis G.;Lemonis, Minas E.;Nguyen, Thuy-Anh;Le, Hiep Van;Pham, Binh Thai
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.471-491
    • /
    • 2021
  • In this study, we estimate the ultimate load of rectangular concrete-filled steel tubes (CFST) by developing a novel hybrid predictive model (ANN-BCMO) which is a combination of balancing composite motion optimization (BCMO) - a very new optimization technique and artificial neural network (ANN). For this aim, an experimental database consisting of 422 datasets is used for the development and validation of the ANN-BCMO model. Variables in the database are related with the geometrical characteristics of the structural members, and the mechanical properties of the constituent materials (steel and concrete). Validation of the hybrid ANN-BCMO model is carried out by applying standard statistical criteria such as root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE). In addition, the selection of appropriate values for parameters of the hybrid ANN-BCMO is conducted and its robustness is evaluated and compared with the conventional ANN techniques. The results reveal that the new hybrid ANN-BCMO model is a promising tool for prediction of the ultimate load of rectangular CFST, and prove the effective role of BCMO as a powerful algorithm in optimizing and improving the capability of the ANN predictor.

Evaluation of Buckling Distortion for the Thin Panel Welded Structure According to Welding Processes (박판 패널 용접부의 용접 기법에 따른 좌굴 변형에 관한 연구)

  • Shin, Sang-Beom;Lee, Dong-Ju;Lee, Joo-Sung
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.23-29
    • /
    • 2008
  • The purpose of this study is to propose the proper fillet welding process for preventing the buckling distortion in thin panel welded structure. In order to do it, a heat input model for laser hybrid welding process was developed using FEA and experiment. The principal factors controlling the angular distortion and longitudinal shrinkage force caused by FCA and laser hybrid welding were identified as the welding heat input and weld rigidity using FEA. The predictive equations of angular distortion and longitudinal shrinkage force for each welding process were formulated as a function of the principal factors proposed. With the predictive equations, the buckling distortion at the thin panel welded structure with welding process was evaluated and compared using nonlinear buckling analysis and STEM(simplified thermo elastic method). Based on the results, the best way to prevent the buckling distortion at the given welded panel structures was identified as an intermittent FCA welding.

The Study on Hybrid Architectures of Fuzzy Neural Networks Modeling (퍼지뉴럴네트워크 모델링의 하이브리드 구조에 관한 연구)

  • Park, Byoung-Jun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2699-2701
    • /
    • 2001
  • The study is concerned with an approach to the design of a new category of fuzzy neural networks. The proposed Fuzzy Polynomial Neural Networks(FPNN) with hybrid multi-layer inference architecture is based on fuzzy neural networks(FNN) and polynomial neural networks(PNN) for model identification of complex and nonlinear systems. The one and the other are considered as premise and consequence part of FPNN respectively. We introduce two kinds of FPNN architectures, namely the generic and advanced types depending on the connection points (nodes) of the layer of FNN. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process and to get output performance with superb predictive ability. The availability and feasibility of the FPNN is discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed FPNN can produce the model with higher accuracy and predictive ability than any other method presented previously.

  • PDF

Prediction of movie audience numbers using hybrid model combining GLS and Bass models (GLS와 Bass 모형을 결합한 하이브리드 모형을 이용한 영화 관객 수 예측)

  • Kim, Bokyung;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.447-461
    • /
    • 2018
  • Domestic film industry sales are increasing every year. Theaters are the primary sales channels for movies and the number of audiences using the theater affects additional selling rights. Therefore, the number of audiences using the theater is an important factor directly linked to movie industry sales. In this paper we consider a hybrid model that combines a multiple linear regression model and the Bass model to predict the audience numbers for a specific day. By combining the two models, the predictive value of the regression analysis was corrected to that of the Bass model. In the analysis, three films with different release dates were used. All subset regression method is used to generate all possible combinations and 5-fold cross validation to estimate the model 5 times. In this case, the predicted value is obtained from the model with the smallest root mean square error and then combined with the predicted value of the Bass model to obtain the final predicted value. With the existence of past data, it was confirmed that the weight of the Bass model increases and the compensation is added to the predicted value.

Developing the administrative model using the data mining technique for injury in National Health Insurance (데이터마이닝 기법을 활용한 국민건강보험 상해상병 관리모형 개발)

  • Park, Il-Su;Han, Jun-Tae;Sohn, Hae-Sook;Kang, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.467-476
    • /
    • 2011
  • We developed the hybrid model coupled with predictive model and business rule model for administration of injury by utilizing medical data of the National Health Insurance in Korea. We performed decision tree analysis using data mining methodology and used SAS Enterprise Miner 4.1. We also investigated under several business rule for benefits (expense paid by insurer) and claims of injury in National Health Insurance Corporation. We can see that the proposed hybrid model provides a quite efficient plausible results.

A Study on the Effects of Intrinsic Motivation, Extrinsic Motivation and Pre-knowledge of Office Workers on the Hybrid Start-up Intention (직장인의 내재적 동기, 외재적 동기와 사전지식이 Hybrid 창업의도에 미치는 영향 연구)

  • Yun, Kyung-Ho;You, Yen-Yoo;Park, In-Chae;Park, Hyun-Sung
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.83-98
    • /
    • 2021
  • This study identified the influence of employees' hybrid start-up intention (intention to start a business while maintaining a job) on the employees' self-determination motivation (intrinsic motivation, extrinsic motivation) and prior knowledge through the Model of Goal-directed Behavior (MGB). We used a PLS-SEM called SmartPLS 3.0 for 126 valid samples collected by judgement extraction for office workers throughout June 13, 2020 to July 3, 2020, and empirically evaluated the measurement model (internal consistency reliability, convergent and discriminant validity) and the structural model (multicollinearity, determination coefficient, effect size, predictive relevance, etc.). Only the intrinsic motivation for realizing the hybrid start-up goal of office workers had a significant impact on the hybrid start-up attitude and subjective norms, and the prior knowledge of hybrid start-up had a significant impact on the hybrid start-up desire and the hybrid start-up intention. In order to induce hybrid start-ups for workers with unstable employment, we need systems and programs that can inspire employees with intrinsic motivation and knowledge about hybrid start-up, so follow-up researches are necessary to analyze about government systems and consulting support that can promote hybrid start-up.

Predictive modeling algorithms for liver metastasis in colorectal cancer: A systematic review of the current literature

  • Isaac Seow-En;Ye Xin Koh;Yun Zhao;Boon Hwee Ang;Ivan En-Howe Tan;Aik Yong Chok;Emile John Kwong Wei Tan;Marianne Kit Har Au
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.28 no.1
    • /
    • pp.14-24
    • /
    • 2024
  • This study aims to assess the quality and performance of predictive models for colorectal cancer liver metastasis (CRCLM). A systematic review was performed to identify relevant studies from various databases. Studies that described or validated predictive models for CRCLM were included. The methodological quality of the predictive models was assessed. Model performance was evaluated by the reported area under the receiver operating characteristic curve (AUC). Of the 117 articles screened, seven studies comprising 14 predictive models were included. The distribution of included predictive models was as follows: radiomics (n = 3), logistic regression (n = 3), Cox regression (n = 2), nomogram (n = 3), support vector machine (SVM, n = 2), random forest (n = 2), and convolutional neural network (CNN, n = 2). Age, sex, carcinoembryonic antigen, and tumor staging (T and N stage) were the most frequently used clinicopathological predictors for CRCLM. The mean AUCs ranged from 0.697 to 0.870, with 86% of the models demonstrating clear discriminative ability (AUC > 0.70). A hybrid approach combining clinical and radiomic features with SVM provided the best performance, achieving an AUC of 0.870. The overall risk of bias was identified as high in 71% of the included studies. This review highlights the potential of predictive modeling to accurately predict the occurrence of CRCLM. Integrating clinicopathological and radiomic features with machine learning algorithms demonstrates superior predictive capabilities.

PromoterWizard: An Integrated Promoter Prediction Program Using Hybrid Methods

  • Park, Kie-Jung;Kim, Ki-Bong
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.194-196
    • /
    • 2011
  • Promoter prediction is a very important problem and is closely related to the main problems of bioinformatics such as the construction of gene regulatory networks and gene function annotation. In this context, we developed an integrated promoter prediction program using hybrid methods, PromoterWizard, which can be employed to detect the core promoter region and the transcription start site (TSS) in vertebrate genomic DNA sequences, an issue of obvious importance for genome annotation efforts. PromoterWizard consists of three main modules and two auxiliary modules. The three main modules include CDRM (Composite Dependency Reflecting Model) module, SVM (Support Vector Machine) module, and ICM (Interpolated Context Model) module. The two auxiliary modules are CpG Island Detector and GCPlot that may contribute to improving the predictive accuracy of the three main modules and facilitating human curator to decide on the final annotation.

Feature selection and prediction modeling of drug responsiveness in Pharmacogenomics (약물유전체학에서 약물반응 예측모형과 변수선택 방법)

  • Kim, Kyuhwan;Kim, Wonkuk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.153-166
    • /
    • 2021
  • A main goal of pharmacogenomics studies is to predict individual's drug responsiveness based on high dimensional genetic variables. Due to a large number of variables, feature selection is required in order to reduce the number of variables. The selected features are used to construct a predictive model using machine learning algorithms. In the present study, we applied several hybrid feature selection methods such as combinations of logistic regression, ReliefF, TurF, random forest, and LASSO to a next generation sequencing data set of 400 epilepsy patients. We then applied the selected features to machine learning methods including random forest, gradient boosting, and support vector machine as well as a stacking ensemble method. Our results showed that the stacking model with a hybrid feature selection of random forest and ReliefF performs better than with other combinations of approaches. Based on a 5-fold cross validation partition, the mean test accuracy value of the best model was 0.727 and the mean test AUC value of the best model was 0.761. It also appeared that the stacking models outperform than single machine learning predictive models when using the same selected features.

Metaheuristic-reinforced neural network for predicting the compressive strength of concrete

  • Hu, Pan;Moradi, Zohre;Ali, H. Elhosiny;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.195-207
    • /
    • 2022
  • Computational drawbacks associated with regular predictive models have motivated engineers to use hybrid techniques in dealing with complex engineering tasks like simulating the compressive strength of concrete (CSC). This study evaluates the efficiency of tree potential metaheuristic schemes, namely shuffled complex evolution (SCE), multi-verse optimizer (MVO), and beetle antennae search (BAS) for optimizing the performance of a multi-layer perceptron (MLP) system. The models are fed by the information of 1030 concrete specimens (where the amount of cement, blast furnace slag (BFS), fly ash (FA1), water, superplasticizer (SP), coarse aggregate (CA), and fine aggregate (FA2) are taken as independent factors). The results of the ensembles are compared to unreinforced MLP to examine improvements resulted from the incorporation of the SCE, MVO, and BAS. It was shown that these algorithms can considerably enhance the training and prediction accuracy of the MLP. Overall, the proposed models are capable of presenting an early, inexpensive, and reliable prediction of the CSC. Due to the higher accuracy of the BAS-based model, a predictive formula is extracted from this algorithm.