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Review Article

This study aims to assess the quality and performance of predictive models for colorectal cancer liver metastasis (CRCLM). A system-
atic review was performed to identify relevant studies from various databases. Studies that described or validated predictive models 
for CRCLM were included. The methodological quality of the predictive models was assessed. Model performance was evaluated by 
the reported area under the receiver operating characteristic curve (AUC). Of the 117 articles screened, seven studies comprising 14 
predictive models were included. The distribution of included predictive models was as follows: radiomics (n = 3), logistic regression 
(n = 3), Cox regression (n = 2), nomogram (n = 3), support vector machine (SVM, n = 2), random forest (n = 2), and convolutional 
neural network (CNN, n = 2). Age, sex, carcinoembryonic antigen, and tumor staging (T and N stage) were the most frequently used 
clinicopathological predictors for CRCLM. The mean AUCs ranged from 0.697 to 0.870, with 86% of the models demonstrating clear 
discriminative ability (AUC > 0.70). A hybrid approach combining clinical and radiomic features with SVM provided the best perfor-
mance, achieving an AUC of 0.870. The overall risk of bias was identified as high in 71% of the included studies. This review highlights 
the potential of predictive modeling to accurately predict the occurrence of CRCLM. Integrating clinicopathological and radiomic fea-
tures with machine learning algorithms demonstrates superior predictive capabilities.

Key Words: Colorectal cancer; Liver metastasis; Prediction; Systematic review

pISSN: 2508-5778ㆍeISSN: 2508-5859
Ann Hepatobiliary Pancreat Surg 2024;28:14-24
https://doi.org/10.14701/ahbps.23-078

INTRODUCTION

Colorectal cancer (CRC) is a global health concern, ranking 
as the second most frequently diagnosed malignancy world-

wide, with an incidence of 1.36 million cases each year [1,2]. 
Moreover, the global occurrence of CRC has been steadily ris-
ing, with an annual increase of 3.2% [3]. Metastases from CRC 
pose a significant obstacle to curative treatment, representing 
a pivotal factor contributing to CRC-related mortality [4]. 
Amongst the organs susceptible to CRC distant metastasis, the 
liver is the most frequently affected [5]. Population-based stud-
ies have revealed that 25% to 30% of CRC patients experience 
colorectal cancer liver metastases (CRCLM) throughout the 
course of the disease [6,7], as a result of lower gastrointestinal 
portal venous drainage [8]. While only 25% of patients with 
CRCLM qualify for operative resection [9], advancements in 
the field have expanded the treatment options for CRCLM. 
Early detection and accurate prediction of CRCLM are para-
mount to improving prognosis and delivering appropriate care 
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for CRC patients.
The application of predictive modeling techniques in health-

care has brought about a transformative shift in the analysis 
and interpretation of medical data [10,11]. These advanced 
computational approaches offer the potential to uncover intri-
cate patterns and relationships that may remain latent within 
large datasets, eluding traditional statistical methods [12]. 
Within the realm of CRCLM, the amalgamation of predictive 
modeling algorithms facilitates the development of robust 
prognostic tools that can consider the intricate interplay of 
multiple variables, providing individualized predictions [13-
16]. These predictive models offer heightened accuracy by 
incorporating clinical parameters, pathological characteristics, 
and molecular biomarkers, empowering clinicians to make in-
formed decisions on treatment strategies and patient manage-
ment [17].

Despite numerous individual studies exploring the applica-
tion of predictive models for CRCLM, a comprehensive eval-
uation of existing literature is currently lacking. A systematic 
analysis of the evidence is therefore timely.

MATERIALS AND METHODS

Database and search strategy
This study was conducted in accordance with the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA, 2020) guidelines [18]. A comprehensive literature 
search was conducted in May 2023 using the following terms: 
(“machine learning” OR “machine intelligen*” OR “machine vi-
sion*” OR “artificial intelligen*” OR “deep learning” OR “neural 
network” OR “supervised learning” OR “unsupervised learn-
ing” OR “reinforcement learning” OR “predictive model*” OR 
“predictive model*”) AND (“colon*” OR “rectal” OR “colorectal” 
OR “colonic” OR “rectum” OR “bowel” OR “intestine”) AND 
(“cancer*” OR “malignan*” OR “neoplas*” OR “tumor*” OR 
“tumour*”) AND (“liver meta*” OR “liver metastasis”) in the 
PubMed, MEDLINE, Embase, and Web of Science databases.

Eligibility criteria
Studies were included if (1) the study population comprised 

male or female patients aged 18 years and above; (2) the par-

Table 1. Predictive modeling terminology included in the systematic review

Term Definition

Predictive modeling The process of creating a model that can predict future outcomes or events using historical data and 
statistical techniques

Statistical learning A field of study that focuses on the development and application of statistical methods and 
algorithms for data analysis and prediction

Machine learning A subfield of AI that focuses on the development of algorithms and models that enable computers 
to learn and make predictions or decisions without being explicitly programmed

Deep learning A subfield of machine learning that focuses on the development and use of AI neural networks with 
multiple layers to learn and extract intricate patterns and representations from data

Logistic regression A statistical modeling technique that predicts the probability of a binary outcome based on one or 
more independent variables

Least absolute shrinkage and selection operator A regularization technique used in regression analysis to perform variable selection and shrinkage of 
coefficients

Survival analysis A statistical method used to analyze the time until an event of interest occurs
Cox regression A statistical technique used for survival analysis to determine the relationship between predictor 

variables and the time-to-event outcome
Nomogram A graphical tool used in statistic and data analysis to estimate the probability of an outcome or to 

calculate the value of a variable based on the values of other variables
Support vector machine An algorithm for machine learning that is used for classification and regression analysis to solve 

complex nonlinear problems
Decision tree A hierarchical, tree-like model is used for classification and decision-making. It arranges a series of 

decisions and their various outcomes into a tree-like structure, where each internal node represents 
a feature or attribute-based decision, and each leaf node represents a class label or an outcome

Random forest A machine learning algorithm that incorporates ensemble learning and decision trees
Convolutional neural network A deep learning algorithm designed to analyze visual data. It automatically learns and extracts 

relevant features from the input data through the use of convolutional layers
Radiomics It involves quantifying medical images, including computed tomography, magnetic resonance 

imaging, and positron emission tomography and computed tomography. It incorporates a high-
throughput extract of many quantitative image features that capture tumor phenotype, texture, 
shape, and spatial correlations. Applying machine learning or statistical learning to radiomic 
features can predict clinical outcomes or make prognostic assessments

AI, artificial intelligence.
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ticipants consisted of adult individuals with CRC and liver 
metastasis; (3) the studies explicitly described and employed 
predictive modeling techniques to forecast the occurrence of 
CRCLM; (4) the studies reported the performance metrics of 
the predictive models, including sensitivity, specificity, accura-
cy, or the area under the receiver operating characteristic curve 
(AUC); (5) the full text of the articles was available for analysis; 
and (6) the articles were written in the English language. Case 
reports, reviews, and meta-analyses were excluded. The selec-
tion criteria did not specify a preferable study design or setting.

Study selection
Two reviewers (YZ and BHA) screened the titles and ab-

stracts of the articles identified in the search to identify poten-
tially eligible studies. Full-text articles were obtained for all po-
tentially eligible studies, and were independently reviewed by 
these two reviewers to determine eligibility. Any discrepancies 
were resolved with a third author (ISE) through discussion and 
consensus. The study selection process was documented using 
a PRISMA flow diagram.

Data collection and analysis
The data collection was structured as per the Checklist for 

Critical Appraisal and Data Extraction for Systematic Reviews 
of Prediction Modeling Studies (CHARMS) [19]. The infor-
mation extracted from each article included: the first author’s 
name, publication year, country of the study, study design, sur-
gical approach, sample size, model details, model performance, 
and model evaluation. Due to significant heterogeneity ob-
served in the study design, model development, and validation 
methodologies across the included studies, a meta-analysis was 
not performed.

Risk of bias assessment
The risk of bias (RoB) of the selected studies was assessed 

using the Prediction Model Risk of Bias Assessment Tool 
(PROBAST) [20]. This tool consists of four domains: patient se-
lection, predictors, outcomes, and analysis. In addition, anoth-

er evaluation was conducted to assess the applicability of the 
included studies across three domains: participants, predictors, 
and outcomes. Two independent reviewers (YZ and BHA) as-
sessed the RoB for each domain, and assigned a rating of high, 
low, or unclear RoB. Any discrepancies were resolved through 
discussion with a third author (ISE). The RoB assessment was 
documented using a graphical summary.

RESULTS

Overview of predictive modeling techniques
Table 1 presents a summary of CRCLM predictive modeling 

techniques included in the review. In broad terms, predictive 
modeling encompasses statistical learning, machine learn-
ing, and deep learning approaches (Fig. 1) [21-23]. Statistical 
learning primarily involves developing and applying statisti-
cal methods and algorithms for predictive purposes. Notable 
examples of statistical learning methods include logistic re-
gression (LR), least absolute shrinkage and selection operator 
(LASSO) regression, Cox regression, and nomogram. A nomo-
gram represents a graphical tool employed within statistical 
learning to estimate the probability of an outcome or compute 
the value of a variable by considering the values of other as-
sociated variables [24]. Machine learning, a subfield of artifi-
cial intelligence (AI), is dedicated to creating algorithms and 
models that empower computers to learn from data and make 
predictions. Prominent machine learning techniques encom-
pass support vector machine (SVM), decision tree, and random 
forest (RF). Deep learning, a subfield of machine learning, 
focuses on leveraging neural networks with multiple layers to 
comprehend intricate patterns and representations within data. 
The convolutional neural network (CNN) is a type of artificial 
neural network used in deep learning.

Radiomics is the extraction and analysis of numerous quan-
titative features from medical images, such as those obtained 
from computed tomography (CT), magnetic resonance imag-
ing (MRI), and positron emission tomography with comput-
ed tomography (PET-CT), into computationally exploitable 

Fig. 1. Tree diagram of predictive modeling 
algorithms included in the systematic 
review. LASSO, least absolute shrinkage and 
selection operator.
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information [25,26]. This method entails extracting textural, 
shape-related, intensity-based, and spatial attributes from im-
ages. By employing machine learning or statistical learning 
techniques on the derived radiomic features, prediction of clin-
ical outcomes becomes possible.

Study characteristics and predictive models
The PRISMA flow diagram (Fig. 2) summarizes the literature 

screening process. After removing duplicates, the search strat-
egy yielded 117 studies for full-text screening. Seven articles 
[15,27-32] were included in this systematic review. Table 2 sum-
marizes the baseline characteristics of the included studies. All 
seven articles were retrospective in design, published between 
2019 and 2022, and comprised six single-center studies and one 
multi-center study with a total of 35,989 participants. Notably, 
two studies had sample sizes larger than 2,000 patients. The 
distribution of included predictive models was as follows: ra-
diomics (n = 3), LR (n = 3), Cox regression (n = 2), nomogram (n 
= 3), SVM (n = 2), RF (n = 2), and CNN (n = 2).

Predictors and outcomes
The predictive outcome of all included studies was the occur-

rence of CRCLM. Three studies integrated radiomics with LR, 
SVM, or RF; three employed nomograms in conjunction with 
LR or Cox regression; and two employed CNN (Table 2). The 
incorporation of clinicopathological variables as significant 
predictors was a consistent practice observed across all includ-
ed studies. Amongst the clinicopathological variables used 
for predicting CRCLM, age (n = 5), sex (n = 3), carcinoembry-
onic antigen (CEA, n = 3), N stage (n = 4), and T stage (n = 3) 

emerged as the most frequently used predictors. Additional 
clinical predictors reported by individual studies included 
tumor size, tumor location, chemotherapy, CT images, digital 
pathological images, vascular emboli, lymphatic invasion, peri-
neurial invasion, family history of CRCLM, and the presence 
of Kirsten rat sarcoma viral oncogene homologue (KRAS) mu-
tations.

Model performance
The discriminative performance of each predictive model 

was assessed using the AUC (Table 2). The AUC values, ranging 
from 0 to 1, were utilized to gauge the predictive performance 
of the models, with 0.5 denoting random chance, and 1.0 indi-
cating a perfect fit [33]. AUC values surpassing 0.7 indicated a 
reasonably accurate prediction model [33]. Regarding the pre-
diction of CRCLM, the mean AUCs ranged between 0.697 to 
0.870, with 86% of models demonstrating clear discriminative 
ability (AUC > 0.70). Amongst the diverse models employed, 
the hybrid approach incorporating both clinical and radiomic 
features alongside SVM demonstrated the highest discrimi-
native ability (AUC = 0.870). Other well-performing models 
included radiomics with SVM (AUC = 0.850), clinical features 
with RF (AUC = 0.860), the combined model integrating both 
clinical and radiomic features with RF (AUC = 0.860), as well 
as CNN model coupled with Cox regression and nomogram 
(AUC = 0.848).

Model evaluation
All included studies conducted internal validation of their 

models through the resampling methods (Table 2), specifically 

Fig. 2 .  PRISMA f low diagram for data 
collection. The search returned a total of 141 
records, of which 7 studies that reported 
predictive modeling techniques to predict 
colorectal caner liver metastasis (CRCLM) 
were included in the systematic review.
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cross-validation (n = 5) and/or bootstrapping (n = 4). Resam-
pling techniques play a crucial role in evaluating and validating 
predictive models, ensuring their performance reliability [34]. 
Cross-validation partitions the available data into distinct sub-
sets, or folds, where the model is trained on one fold (training 
set), and evaluated on the remaining fold (validation set) [35]. 
This technique mitigates overfitting risks and gauges the mod-
el’s generalizability across diverse data subsets. Conversely, 
bootstrapping involves generating multiple bootstrap samples 
through random sampling with replacement from the original 
dataset [35]. These bootstrap samples, of the same size as the 
original dataset, enable the training and evaluation of multiple 
models. Bootstrapping’s diverse resampled datasets facilitate 
the estimation of model performance variability and calcula-
tion of confidence intervals for key metrics, such as accuracy 
or AUC. The calibration, which pertains to the correspondence 
between the anticipated probabilities derived from a predictive 
model and the actual observed outcomes, signifying the preci-
sion and dependability of the model’s predictions, was report-
ed for two nomogram models. None of the included studies 
reported external validation.

Risk of bias
Fig. 3 and Supplementary Table 1, 2 present the results of RoB 

and applicability assessment. The overall RoB was determined 
to be high in 71% of the included studies. Within the partic-
ipants domain, 57% of the studies were assessed as having a 
low RoB. However, one study [28] was identified as having a 
high RoB due to insufficiently detailed inclusion criteria, while 
two studies [30,31] were classified as having an unclear RoB 
for similar reasons. Regarding the domain of predictors, 43% 
of the studies were assessed as low RoB. Notably, four studies 
[15,27,29,30] that utilized radiomic features were assigned a 
high RoB, due to the inherent complexity associated with these 
features. As for the outcomes domain, 71% of the studies were 
assessed as low RoB, with two studies [15,29] identified as hav-
ing a high RoB due to their relatively small sample sizes (< 100). 
For the domain of analysis, 71% of the studies were assessed as 
low RoB, while only one study [29] was deemed to have a high 
RoB due to a lack of information regarding the 95% confidence 
interval of AUC, and the absence of details concerning the pre-
dictor selection process, coupled with a small sample size.

DISCUSSION

This systematic review encompassed a comprehensive anal-
ysis of seven studies, collectively reporting 14 predictive mod-
els incorporating diverse risk factors for CRCLM. Our study 
sought to identify and evaluate the predictive models that ex-
hibited promising discrimination capabilities for CRCLM. By 
considering the characteristics of the included studies, essential 
insights regarding the current research landscape of predictive 
modeling for CRCLM were obtained.Ta
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The retrospective design of all seven studies underscored the 
reliance on historical data to develop and validate predictive 
models. This approach allowed clinicians and researchers to 
leverage existing patient information to construct and assess 
the performance of the models [36]. Furthermore, all studies 
were published between 2019 and 2022, ref lecting the recent 
interest in predictive modeling for CRCLM. The temporal 
proximity of these articles suggests an evolving and dynamic 
research landscape characterized by the ongoing pursuit of in-
novative strategies for predicting CRCLM.

The distribution of predictive models also exhibited consid-
erable diversity with various statistical/machine/deep learning 
approaches, including LR, Cox regression, nomogram, SVM, 
RF, and CNN. The 14 predictive models demonstrated mean 
AUC values ranging from 0.697 to 0.870, with the majority 
(71%) achieving an AUC exceeding 0.75, indicating valuable 
discriminatory performance [37]. Three studies used radiomic 
features in conjunction with machine learning algorithms to 
predict CRCLM, with one study resulting in the highest AUC 
of 0.870 by combining clinical and radiomic features with 
SVM. This highlights the effectiveness of integrating multiple 
data sources and advanced computational techniques at en-
hancing the accuracy of CRCLM prediction.

CT, MRI, and PET-CT are frequently used imaging modali-
ties to detect CRCLM. Nevertheless, their diagnostic sensitivity 
and accuracy can vary depending on equipment and reporting 
radiologist’s expertise [38]. In a meta-analysis with a 20-year 
study period, the detection sensitivities for CRCLM for CT, 
MRI, and PET-CT were reported as 74.4%, 80.3%, and 81.4%, 
respectively [39]. Radiomics has shown promise in surpassing 

the limitations of conventional imaging, by enabling quantita-
tive and comprehensive analysis of tumor characteristics [40]. 
Its ability to capture hidden patterns and heterogeneity within 
the tumor microenvironment provides valuable insights into 
the risk and potential for CRCLM development. Our results 
showed that radiomic models employing quantitative image 
features extracted from CT or MRI achieved an AUC greater 
than 0.70. These findings are consistent with studies that used 
radiomic models to predict distant metastases in other types 
of cancer [41-43], suggesting that the combination of radiomic 
features and machine learning techniques has the potential to 
improve the predictive accuracy of CRCLM.

However, the application of radiomics in predicting CRCLM 
faces several challenges. One significant drawback is the po-
tential variability in image features across healthcare settings. 
Variations in imaging protocols, equipment, and image acqui-
sition techniques can lead to inconsistencies in the extracted 
radiomic features. As a result, a model developed and validated 
in one healthcare setting may not perform optimally when ap-
plied to another setting. To overcome the lack of generalizabil-
ity, the integration of clinicopathological alongside radiomic 
characteristics becomes crucial.

Clinical attributes provide important contextual information 
that complements the image-based features captured by radio-
mics. While radiomic features may be influenced by site-spe-
cific variations, clinical attributes tend to have a more consis-
tent definition. Age, sex, CEA levels, and tumor stage (T and N 
staging) were identified as the most widely used predictors for 
CRCLM. Age is a fundamental demographic feature that may 
serve as a proxy for multiple factors associated with disease 

Fig. 3. Methodological evaluation of the 
included predictive models. Assessment 
of the RoB based on PROBAST criteria. (A) 
Summary of RoB assessment. (B) Summary 
of applicability assessment. PROBAST, pre
diction model risk of bias assessment tool; 
RoB, risk of bias.
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pathogenesis and progression. Age-related alterations in the 
immune response and decreased immune surveillance, includ-
ing impaired T-cell proliferation, increased CD8+ cytotoxic cell 
numbers, and decreased CD4+ T-cell and CD19+ B-cell num-
bers, have been postulated to affect the immune capacity to 
identify and eliminate metastatic CRC cells, thereby potentially 
contributing to an increased risk of CRCLM [44-49].

Similarly, sex disparities in metastatic CRC outcomes have 
been observed [50,51], establishing sex as a noteworthy pre-
dictor for CRCLM. Hormones, including estrogen and testos-
terone, have been implicated in CRC development and pro-
gression [52,53]. Sex-specific hormonal differences influence 
the susceptibility to CRCLM, as estrogen potentially exerts 
protective effects against CRCLM development [52,54]. CEA 
is associated with other key factors, such as large tumor size, 
advanced tumor stage, lymph node involvement, and its in-
volvement in facilitating tumor cell adhesion, migration, and 
invasion processes [55-59]. The regular monitoring of CEA lev-
els plays a pivotal role in identifying individuals at heightened 
risk of CRCLM, and aids in the formulation of appropriate sur-
veillance and treatment strategies [60]. The depth of tumor in-
vasion and lymph node involvement are also high-risk features 
and predictors for CRCLM development [61].

SVM, RF, and Cox regression with nomogram showed better 
performance than LR and CNN in the prediction of CRCLM. 
SVM can effectively handle complex and high-dimensional 
clinical and radiomic features, capturing intricate patterns 
and non-linear relationships, which is crucial for accurate pre-
dictions [62]. The ability of SVM to separate data points into 
different classes by finding an optimal hyperplane maximally 
distant from the data points of different classes enhances its 
predictive accuracy [63]. RF is an ensemble learning method 
that combines multiple decision trees to make predictions. By 
constructing a multitude of decision trees on random subsets 
of the data and aggregating their predictions, RF can mitigate 
overfitting, and improve the generalizability of the predictive 
model [64]. Cox regression with nomogram is a survival anal-
ysis technique that considers time-to-event data and covari-
ates. By incorporating clinical variables and constructing a 
nomogram, which visually represents the contribution of each 
predictor, this approach allows estimation of individualized 
probabilities for developing CRCLM.

On the other hand, LR and CNN may exhibit comparatively 
lower prediction performance. LR assumes linear relationships 
between predictors and the outcome, which may not adequate-
ly capture the complex interactions and non-linear associations 
present. CNN, although powerful in image analysis tasks, may 
not fully exploit the relevant features for CRCLM prediction, as 
it primarily focuses on extracting spatial patterns from med-
ical images instead of incorporating clinical variables. Incor-
porating CNN for digital pathological image analysis, followed 
by Cox regression and nomogram, can enhance the predictive 
accuracy of the model.

Despite the generally high accuracies observed in the pre-
dictive models assessed in this review, there remain several 
limitations. One notable shortcoming is the absence of external 
validation in all seven included studies. In addition, calibra-
tion, which provides information about the agreement between 
predicted probabilities and observed outcomes, was only re-
ported in three studies (43%) that utilized nomograms. Poor 
calibration suggests potential under- or overestimation of the 
desired outcome by the model. Furthermore, the assessment of 
model performance primarily relied on discrimination mea-
sures, specifically AUC, as calibration measures were absent in 
four (57%) of the included studies. Due to the considerable het-
erogeneity amongst the included studies, conducting a pooled 
analysis or comparative meta-analysis of predictive models was 
not feasible.

Nonetheless, this review provides valuable insights into 
the current landscape of predictive models for CRCLM. Our 
findings highlight the potential of various algorithms by aug-
mented by clinical and radiomic features in accurately pre-
dicting CRCLM. Future research could address the identified 
limitations by incorporating external validation in predictive 
model development. Efforts should also be made to improve 
the reporting of calibration measures, enhancing model 
performance and calibration accuracy. Furthermore, the 
heterogeneity of the included studies highlights the need for 
standardized methodologies and reporting guidelines in the 
field of predictive modeling. Developing consensus criteria and 
guidelines would facilitate more rigorous and comparable eval-
uations of predictive models, facilitating more robust evidence 
synthesis and meta-analyses. Collaborative efforts, particularly 
multi-center studies, are essential to enhance the generalizabil-
ity and clinical utility of predictive models for CRCLM.

Conclusion
This review demonstrates the potential of predictive mod-

eling for CRCLM. The integration of clinicopathological and 
radiomic features with machine learning algorithms showed 
superior predictive capabilities. External validation studies are 
necessary to establish the reliability and generalizability of pre-
dictive models, particularly across diverse healthcare settings. 
Improved reporting and standardized methodologies are also 
required to facilitate the integration of predictive models into 
routine clinical practice.
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