• Title/Summary/Keyword: hybrid poplar

Search Result 43, Processing Time 0.027 seconds

Propagation by Leafy Stem Cuttings Containing Xylem of Populus alba × P. glandulosa Clone Bongwha1

  • Hak Gon, Kim;Seong Hyeon, Yong;Hyung Ho, Kim;Myung Suk, Choi
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.4
    • /
    • pp.249-255
    • /
    • 2022
  • The study was conducted to establish a method for the proliferation of hybrid poplar (P. alba × P. glandulosa) clone Bongwha1, an excellent biomass species. It was found that to collect the cuttings of Bonghwa1, it was necessary to use the main stem rather than the axillary branch. Stem growth by green-wood cuttings showed a tendency to decrease as the length of the collected cuttings increased, but the survival rate was low. Therefore, modified leafy stem cutting was attempted to increase the survival rate of the cuttings. In the modified leafy stem cutting method, 4 leaves were included in the cuttings, and especially, cuttings were performed using cuttings containing 2-4 cm xylem parts. Leafy stem cutting increased root growth and the number of stems, as well as the survival rate of hybrid poplar clone Bongwha1 compared to green-wood cuttings. The root growth of the leafy stem cutting poplar was better as there was more xylem part. Using two-year-old nursery stocks, the leafy stem cutting was used to produce about 66 cuttings. This study is expected to contribute to the mass propagation of high-quality nursery stocks.

Growth Response and Adaptability of Poplar Species Treated with Liquid Pig Manure (양돈분뇨 처리에 대한 포플러류의 생장반응 및 적응능력)

  • Kim, Hyun-Chul;Shin, Hanna;Lee, Heon-Ho;Yeo, Jin-Kie;Kang, Kyu-Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.420-427
    • /
    • 2013
  • This study was conducted to analyze growth characteristics and adaptability of poplar clones under the treatment of liquid pig manure. The average of survival rate was 33% better at control than the treatment under age of 5 years. But, tree height and DBH growth were higher at the treatment than control. Populus euramericana 'Eco28' showed the highest survival rate (97.9%) under the treatment. P. euramericana 'Eco28' and P. deltoides hybrid 'Dorskamp' could be selected as superior clones for height and DBH growth under the liquid pig manure treatment. The above-ground biomass production was also investigated when the poplar clones were 5 years old. The aboveground biomass under the liquid pig manure treatment was, on average. 52.6 ton/ha, which was 80% higher than control (29.1 ton/ha). P. euramericana 'Eco28' (73.6 ton/ha) and P. deltoides hybrid 'Dorskamp' (71.1 ton/ha) showed superior biomass production than other clones at the treatment of liquid pig manure. Based on survival, growth and demage traits, the adaptability of poplar clones to liquid pig manure treatment was estimated. P. deltoides hybrid 'Dorskamp' and P. euramericana 'Eco28' showed better adaptability to the treatment. P. nigra ${\times}$ P. maximowiczii '62-10' and P. koreana ${\times}$ P. nigra var. italic 'Suwon' were identified as poor adaptability clones.

An Effective Selection of PAT Gene Transformed Populus alba $\{times}$ Populus glandulosa No.3 using Herbicide Basta Treatment (제초제 Basta를 이용한 Phosphinothricin Acetyltransferase 유전자로 형질전환된 현사시 3호의 효율적인 선발)

  • 오경은;문흥규;박재인;양덕춘
    • Korean Journal of Plant Resources
    • /
    • v.17 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • This study was conducted to simple transformants selection by herbicide Basta treatment after transformation with Agrobacteium tumefaciens MP90/PAT in hybrid poplar(Populus alba ${\times}$ P. glandulosa No. 3). In preliminary study, we determined that the lethal concentration of herbicide Basta was 1.0mg/L in callus culture, adventitious bud formation and axillary bud elongation experiment. By the treatment of 1.0mg/L Basta, we could be selected the transformed shoots effectively from the various cultures. In addition, the treatment was useful on selection of transformants which are growing in soil pot. Finally, we also confirmed the transformation by PAT assay, Above results show that the herbicide Basta treatment and PAT assay can be a very simple and effective method for the identification of PAT gene transformed hybrid poplar.

Genome editing of hybrid poplar (Populus alba × P. glandulosa) protoplasts using Cas9/gRNA ribonucleoprotein (현사시나무 원형질체에서 리보핵산단백질을 활용한 유전자 교정 방법 연구)

  • Park, Su Jin;Choi, Young-Im;Jang, Hyun A;Kim, Sang-Gyu;Choi, Hyunmo;Kang, Beum-Chang;Lee, Hyoshin;Bae, Eun-Kyung
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.34-43
    • /
    • 2021
  • Targeted genome editing using the CRISPR/Cas9 system is a ground-breaking technology that is being widely used to produce plants with useful traits. However, for woody plants, only a few successful attempts have been reported. These successes have used Agrobacterium-mediated transformation, which has been reported to be very efficient at producing genetically modified trees. Nonetheless, there are unresolved problems with plasmid sequences that remain in the plant genome. In this study, we demonstrated a DNA-free genome editing technique in which purified CRISPR/Cas9 ribonucleoproteins (RNPs) are delivered directly to the protoplasts of a hybrid poplar (Populus alba × Populus glandulosa). We designed three single-guide RNAs (sgRNAs) to target the stress-associated protein 1 gene (PagSAP1) in the hybrid poplar. Deep sequencing results showed that pre-assembled RNPs had a more efficient target mutagenesis insertion and deletion (indel) frequency than did non-assembled RNPs. Moreover, the RNP of sgRNA3 had a significantly higher editing efficacy than those of sgRNA1 and sgRNA2. Our results suggest that the CRISPR/Cas9 ribonucleoprotein-mediated transfection approach is useful for the production of transgene-free genome-edited tree plants.

Organ Specific Expression of the nos-NPT II Gene in Transgenic Hybrid Poplar (형질 전환된 포플러에 대한 nos-NPT II 유전자의 기관별 발현 특성)

  • Chun, Young Woo;Klopfenstein, Ned B.
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.1
    • /
    • pp.77-86
    • /
    • 1995
  • To effectively modify tree function with genetic engineering, transgenes must be expressed at the proper level in the appropriate tissues at suitable developmental stages. Toward understanding the spatial and temporal expression of transgenes in woody plants, transgene expression was evaluated in three greenhouse-grown, transgenic lines of Populus alba ${\times}$ P. grandidentata hybrid clone 'Hansen'. All transgenic poplar lines possess constructs containing the bacterial nopaline synthase(nos) promoter linked to a neomycin phosphotransferase II(NPT II) selectable marker gene. In addition, each transgenic poplar line contains one of the following gene constructs : 1) a wound-inducible potato proteinase inhibitor II (pin2) promoter linked to a chloramphenicol acetyltransferase(CAT) reporter gene. 2) a nos promoter linked to a PIN2 structural gene : or 3) a Cauliflower Mosaic Virus 35s promoter linked to a PIN2 structural gene. Polymerase chain reaction(PCR) was used to verify the presence of foreign genes in the poplar genome. Enzyme-linked immunosorbent assays(ELISAs) were used to evaluate organ specific expression of the nos-NPT II construct. NPT II expression was detected in leaves, petioles, stems, and roots of transgenic poplar, thereby indicating that the nos promoter is potentially effective for general constitutive expression of transgenes. NPT expression varied among transgenic poplar lines and among organs for one transgenic line, Tr15. With Tr15, NPT II levels were highest in older leaves and petioles. These results indicate that screening of several transgenic lines may be required to identify lines with optimal transgene expression.

  • PDF

Growth, Photosynthesis and Rubisco Activity of Resistant Hybrid Poplar(Populus trichocarpa×P. deltoides) to Ozone Exposure: A Link with Compensatory Strategy (오존에 노출(露出)시켰을 때 저항성(抵抗性)을 갖는 잡종(雜種)포플러의 생장(生長), 광합성(光合成) 그리고 Rubisco 활성(活性)에 관(關)한 연구(硏究): 수목(樹木)의 보상전략(補償戰略)과의 관계(關係))

  • Woo, Su-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.80-86
    • /
    • 1997
  • The objective of this study was to investigate how resistant poplar hybrid makes compensation to ozone stress. Growth, net assimilation rate and initial Rubisco activity were investigated. This study elucidates the physiological mechanisms associated with ozone sensitivity and resistance in 3 selected $F_2$ hybrids, a family originating from a cross between Populus trichocarpa${\times}$P. deltoides. Open-top chambers were used. Ozone concentrations varied from 90 to 115 ppb for 126 days, 6 to 9 hours in a day. This study tested the hypothesis that resistant poplar hybrid maintains the biomass production to ozone exposure via increased net assimilation rate and Rubisco activity. Growth, biomass, net assimilation rate and initial Rubisco activity were generally reduced by ozone treatment. In the tree parts, root under ozone stress was the most sensitive part. Reduced allocation of photosynthates to root growth might be due to increased respiratory demands for maintenance and repair of aboveground tissue damaged by ozone stress. Maintenance or increases remaining leaves in photosynthetic rates and Rubisco activity in resistant clone in response to ozone treatment were the results of biological compensation to ozone stress.

  • PDF

Effects of Ozone Environmental Stress on Growth and Stomatal Response in the F2 Hybrid Poplar (Populus trichocarpa × Populus deltoides) (오존 환경(環境)이 잡종(雜種) 포플러의 생장(生長)과 기공개폐(氣孔開閉)에 미치는 영향(影響))

  • Woo, Su-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.1
    • /
    • pp.50-56
    • /
    • 1998
  • Thirty-six $F_3$ hybrid poplar (Populus trichocarpa${\times}$P. deltoides) clones were fumigated with ozone to select for ozone sensitive and resistant clones. Fumigation was applied for 6 to 8 hours each day for approximately 3 months at ozone concentrations of 90 to 115 ppb using by open-top chambers. Height, diameter, number of leaves, total biomass, biomass components, root/shoot ratios, leaf drop and stomatal response were investigated. In summary, ozone generally reduced height, diameter, number of leaves, total biomass, and root/shoot ratios. Ozone stress induced leaf drop and foliar senescence in trees. This study showed very low relationship between total biomass and stomatal conductance. Increased plant resistant to ozone is not always correlated with stomatal behaviour. Probably, characterization of biochemical and other physiological responses to ozone exposure can provide a better understanding of tree response to ozone environment.

  • PDF

Identification of salt and drought inducible glutathione S-transferase genes of hybrid poplar

  • Kwon, Soon-Ho;Kwon, Hye-Kyoung;Kim, Wook;Noh, Eun Woon;Kwon, Mi;Choi, Young Im
    • Journal of Plant Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.26-32
    • /
    • 2014
  • Recent genome annotation revealed that Populus trichocarpa contains 81 glutathione S-transferase (GST) genes. GST genes play important and varying roles in plants, including conferring tolerance to various abiotic stresses. Little information is available on the relationship - if any - between drought/salt stresses and GSTs in woody plants. In this study, we screened the PatgGST genes in hybrid poplar (Populus alba ${\times}$ Populus tremula var. glandulosa) that were predicted to confer drought tolerance based on our expression analysis of all members of the poplar GST superfamily following exposure to salt (NaCl) and drought (PEG) stresses, respectively. Exposure to the salt stress resulted in the induction of eight PatgGST genes and down-regulation of one PatgGST gene, and the level of induction/repression was different in leaf and stem tissues. In contrast, 16 PatgGST genes were induced following exposure to the drought (PEG) stress, and two were down-regulated. Taken together, we identified seven PatgGSTs (PatgGSTU15, PatgGSTU18, PatgGSTU22, PatgGSTU27, PatgGSTU46, PatgGSTU51 and PatgGSTU52) as putative drought tolerance genes based on their induction by both salt and drought stresses.

Change in Levels of Endogenous Hormone and Detection of Adventitious Bud-Related Protein during Culture of Hybrid Poplar Explants

  • Song, Jae-Jin
    • Journal of Plant Biology
    • /
    • v.38 no.2
    • /
    • pp.143-151
    • /
    • 1995
  • Addition of plant growth hormones [0.01 mg/L NAA and 0.2mg/L benzyladenine (BA)] to a woody plant medium stimulated the adventitious bud formation of poplar explants during culture. Endogenous IAA content increased rapidly at the initial culture stage and then decreased, being followed by rapid increment again at the late culture. But the content of trans-zeatin riboside (t-ZR) increased continuously during the culture. Cytoplasmic soluble proteins were analyzed by one- and two-dimensional SDS-PAGE. Increased amount of 40 kD band was detected by one-dimensional electrophoresis using Coomassie Blue staining during the culture and two distinctive proteins whose mol wt is 40,000 were detected by two-dimensional electrophoresis using autoradiography and these proteins were synthesized continuously prior to the adventitious bud formation. When the midvein segments were transferred to the actinomycin D-containing medium, the spots of adventitious bud-related proteins(ABRPs) did not disappeared but weakened in intensity. So, it is concluded that genes coding for the ABRPs are regulated to some degree at the transcriptional level. Also, they were not observed in BA-free medium, suggesting that these proteins be regulated by cytokinin, which made then possible to form the adventitious bud.

  • PDF