• Title/Summary/Keyword: hybrid nanomaterials

Search Result 36, Processing Time 0.034 seconds

Photocatalytic Performance of Graphene-TiO2 Hybrid Nanomaterials Under Visible Light

  • Park, Jaehyeung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.161-164
    • /
    • 2019
  • This study describes the development of graphene-$TiO_2$ conjugates for the enhancement of the photocatalytic efficiency of $TiO_2$. Graphene-based hybrid nanomaterials have attracted considerable attention because of the unique and advantageous properties of graphene. In the proposed hybrid nanomaterial, graphene serves as an electron acceptor to ensure fast charge transfer. Effective charge separation can, therefore, be achieved to slow down electron-hole recombination. This results in an enhancement of the photocatalytic activity of $TiO_2$. In addition, increased adsorption and interactions with the adsorbed reagents also lead to an improvement in the photocatalytic activity of graphene-$TiO_2$ hybrid nanomaterials. The acquired result is encouraging in that the photocatalytic activity of $TiO_2$ was initiated using visible light (630 nm) instead of the typical UV light.

Improve the Transparency of Liquid Crystal Display Using Hybrid Conductive Films Based on Carbon Nanomaterials

  • Shin, Seung Won;Kim, Ki-Beom;Jung, Yong Un;Hur, Sung-Taek;Choi, Suk-Won;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.241.2-241.2
    • /
    • 2014
  • We present highly transparent liquid crystal displays (LCDs) using hybrid films based on carbon nanomaterials, metal grid, and indium-tin-oxide (ITO) grid. Carbon based nanomaterials are used as transparent electrodes because of high transmittance. Despite of their high transmittance they have relatively high sheet resistance. To solve this problem, we applied grid and made hybrid conductive films based on carbon nanomaterials. Conventional photolithography processes were used to make a grid pattern of metal and ITO. To fabricate transparent conductive films, carbon nanotube (CNT) ink was spin coated on the grid pattern. The transparency of the conductive film was controlled by shape and size of the grid pattern and the thickness of CNT films. The optical transmittance of CNT-based hybrid films is 92.2% and sheet resistance is also reduced to $168{\Omega}/square$. These substrates were used for the fabrication of typical twisted nematic (TN) LCD cells. From the characteristics of LCD devices such as transmittance, operating voltage, voltage holding ratio our devices were comparable to those of pristine ITO substrates. The result shows that the hybrid conductive films based on carbon nanomaterials could be alternative of ITO for the highly transparent LCDs.

  • PDF

Ordered Hybrid Nanomaterials from Self-Assembled Polymeric Building Blocks

  • Kim, Dong-Ha
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.309-309
    • /
    • 2006
  • Latest developments on hybrid nanostructured materials fabricated by applying self-assembly strategies on organic/inorganic nanotemplates are discussed. Within this frame, numerous functional nanomaterials including arrays of composite metal/semiconductor nanoparticles, planar waveguides and functional multilayer thin films are generated using self-assembled polymers as templates or building blocks. In particular, surface plasmon resonance based optical sensing is employed to investigate nanofabrication processes occurring in nanoscale dimention. We also suggest unprecedented pathways to hybrid supramolecular multilayer nanoarchitectures in 1D or 2D geometry via layer-by-layer self-assembly.

  • PDF

Effect of Edge-Chemistry on Graphene-Based Hybrid Electrode Materials for Energy Storage Device

  • Hyo-Young Kim;Ji-Woo Park;Seo Jeong Yoon;In-Yup Jeon;Young-Wan Ju
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.31-37
    • /
    • 2023
  • Owing to the rapid climate change, a high-performance energy storage system (ESS) for efficient energy consumption has been receiving considerable attention. ESS, such as capacitors, usually has issues with the ion diffusion of electrode materials, resulting in a decrease in their capacitance. Notably, appropriate pore diameter and large specific surface area (SSA) may result in an effective ion diffusion. Therefore, graphene and multi-walled carbon nanotube (graphene@MWCNT) hybrid nanomaterials, with covalent bonds between the graphene and MWCNT, were prepared via an edge-chemistry reaction. The properties of these materials, such as high porosity, large SSA, and high electroconductivity, make them suitable to be used as electrode materials for capacitors. The optimal ratio of graphene to MWCNT can affect the electrochemical performance of the electrode material based on its physical and electrochemical properties. The supercapacitor using optimal graphene-based hybrid electrode material exhibited highest specific capacitance value as 158 F/g and excellent cycle stability.

Preparation of Core/Shell Nanoparticles Using Poly(3,4-ethylenedioxythiophene) and Multi-Walled Carbon Nanotube Nanocomposites via an Atom Transfer Radical Polymerization (Poly(3,4-ethylenedioxythiophene)을 이용한 Core/shell 나노입자와 원자이동 라디칼중합 공정에 의한 다중벽 탄소나노튜브 나노복합체 제조)

  • Joo, Young-Tae;Jin, Seon-Mi;Kim, Yang-Soo
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.452-457
    • /
    • 2009
  • Hybrid nanomaterials consisting of multi-walled carbon nanotube(MWNT) and/or PEDOT of conductive polymer were prepared in this study. In the presence of catalyst and ligand, the MWNT-Br compound prepared by the successive surface treatment reaction was mixed with MMA to initiate the atom transfer radical polymerization process. PMMA was covalently linked to the surface of MWNT for the formation of MWNT/PMMA nanocomposites. The EDOT and oxidant were added in the aqueous emulsion of PS produced via a miniemulsion polymerization process and then it proceeded to carry out the oxidative chemical polymerization of EDOT for the preparation of PEDOT/PS nanoparticles with the core-shell structure. The aqueous dispersion of PEDOT:poly(styrene sulfonate) (PSS) was mixed with the silica particles treated with a silane compound and thus PEDOT:PSS-clad silica nanoparticles were prepared by the surface chemistry reaction. The hybrid nanomaterials were analyzed by using TEM, FE-SEM, TGA, EDX, UV, and FT-IR.

Hybrid Carbon Nanomaterials for Electromagnetic Interference Shielding (전자파 차폐용 하이브리드 탄소나노물질)

  • Lee, Si-Hwa;Oh, Il-Kwon
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.138-144
    • /
    • 2016
  • Recently, electromagnetic interference (EMI) shielding materials have been extensively developed and significantly considered to protect electronic systems from harmful electromagnetic waves. Although, metal-based materials show high electrical conductivity and EMI shielding effectiveness, they have several challenging problems such as high density and corrosion. Carbon-based materials have been acclaimed as alternative EMI materials due to light weight, high mechanical properties, resistance to corrosion and excellent electrical conductivity. Here, we introduce 1-phase and 2-phase carbon materials as well as 3-phase hybrid carbon materials. The 3-phase hybrid carbon materials composed of metal nanoparticles, carbon nanotubes and graphene can be used as a promising EMI shielding material.

Effects of Morphologies of Carbon Nanomaterials on Conductivity of Composites Containing Copper/Carbon Nanomaterial Hybrid Fillers (탄소 나노 물질의 형상에 따른 구리/탄소나노물질 하이브리드 필러의 전도성 향상 거동 분석)

  • Lee, Yeonjoo;Hong, Sung-uk;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.435-440
    • /
    • 2018
  • In the present study, we develop a conductive copper/carbon nanomaterial additive and investigate the effects of the morphologies of the carbon nanomaterials on the conductivities of composites containing the additive. The conductive additive is prepared by mechanically milling copper powder with carbon nanomaterials, namely, multi-walled carbon nanotubes (MWCNTs) and/or few-layer graphene (FLG). During the milling process, the carbon nanomaterials are partially embedded in the surfaces of the copper powder, such that electrically conductive pathways are formed when the powder is used in an epoxy-based composite. The conductivities of the composites increase with the volume of the carbon nanomaterial. For a constant volume of carbon nanomaterial, the FLG is observed to provide more conducting pathways than the MWCNTs, although the optimum conductivity is obtained when a mixture of FLG and MWCNTs is used.

Synthesis of Hybrid Fullerene Oxide[C60(O)n, (n≥1)] - Silver Nanoparticle Composites and Their Catalytic Activity for Reduction of 2-, 3-, 4-Nitroaniline

  • Park, Jeong Hoon;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.252-256
    • /
    • 2019
  • Fullerene oxide[$C_{60}(O)_n$, ($n{\geq}1$)] was synthesized by dissolving fullerene[$C_{60}$] and 3-chloroperoxybenzoic acid in toluene under refluxing condition for 5 h. Hybrid fullerene oxide-silver nanoparticle composites were synthesized by dissolving fullerene oxide and silver nitrate[$AgNO_3$] in diethylene glycol under ultrasonic irradiation for 3 h. The synthesized hybrid nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, and ultraviolet-visible[UV-vis] spectroscopy. The catalytic activity for the reduction of various nitroanilines[NAs] was identified by UV-vis spectrophotometer. The efficiency of the catalytic reduction by the synthesized hybrid nanocomposites has an order of 4-NA > 2-NA > 3-NA.