Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.2.161

Photocatalytic Performance of Graphene-TiO2 Hybrid Nanomaterials Under Visible Light  

Park, Jaehyeung (Division of Advanced Materials Engineering, Dong-Eui University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.2, 2019 , pp. 161-164 More about this Journal
Abstract
This study describes the development of graphene-$TiO_2$ conjugates for the enhancement of the photocatalytic efficiency of $TiO_2$. Graphene-based hybrid nanomaterials have attracted considerable attention because of the unique and advantageous properties of graphene. In the proposed hybrid nanomaterial, graphene serves as an electron acceptor to ensure fast charge transfer. Effective charge separation can, therefore, be achieved to slow down electron-hole recombination. This results in an enhancement of the photocatalytic activity of $TiO_2$. In addition, increased adsorption and interactions with the adsorbed reagents also lead to an improvement in the photocatalytic activity of graphene-$TiO_2$ hybrid nanomaterials. The acquired result is encouraging in that the photocatalytic activity of $TiO_2$ was initiated using visible light (630 nm) instead of the typical UV light.
Keywords
Graphene; $TiO_2$; Photocatalyst; Hybrid nanomaterial;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. V. Kamat, J. Phys. Chem. Lett., 2, 242 (2011). [DOI: https://doi.org/10.1021/jz101639v]   DOI
2 H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, ACS Nano, 4, 380 (2009). [DOI: https://doi.org/10.1021/nn901221k]   DOI
3 Y. Zhang, Z. R. Tang, X. Fu, and Y. J. Xu, ACS Nano, 5, 7426 (2011). [DOI: https://doi.org/10.1021/nn202519j]   DOI
4 R. Long, N. J. English, and O. V. Prezhdo, J. Am. Chem. Soc., 134, 14238 (2012). [DOI: https://doi.org/10.1021/ja3063953]   DOI
5 S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K. J. Balkus Jr, ACS Catal., 2, 949 (2012). [DOI: https://doi.org/10.1021/cs200621c]   DOI
6 B. Qiu, M. Xing, and J. Zhang, J. Am. Chem. Soc., 136, 5852 (2014). [DOI: https://doi.org/10.1021/ja500873u]   DOI
7 R. Mo, Z. Lei, K. Sun, and D. Rooney, Adv. Mater., 26, 2084 (2014). [DOI: https://doi.org/10.1002/adma.201304338]   DOI
8 I. V. Lightcap and P. V. Kamat, J. Am. Chem. Soc., 134, 7109 (2012). [DOI: https://doi.org/10.1021/ja3012929]   DOI
9 J. Park, T. Jin, C. Liu, G. Li, and M. Yan, ACS Omega, 1, 351 (2016). [DOI: https://doi.org/10.1021/acsomega.6b00113]   DOI
10 J. Park and M. Yan, Nanotechnol. Rev., 5, 417 (2016). [DOI: https://doi.org/10.1515/ntrev-2015-0043]   DOI
11 A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev., 95, 735 (1995). [DOI: https://doi.org/10.1021/cr00035a013]   DOI
12 K. Hashimoto, H. Irie, and A. Fujishima, Jpn. J. Appl. Phys., 44, 8269 (2005). [DOI: https://doi.org/10.1143/JJAP.44.8269]   DOI
13 J. S. Lee, K. H. You, and C. B. Park, Adv. Mater., 24, 1084 (2012). [DOI: https://doi.org/10.1002/adma.201104110]   DOI
14 C. Nethravathi and M. Rajamathi, Carbon, 46, 1994 (2008). [DOI: https://doi.org/10.1016/j.carbon.2008.08.013]   DOI
15 C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett., 7, 3499 (2007). [DOI: https://doi.org/10.1021/nl072090c]   DOI
16 G. Williams, B. Seger, and P. V. Kamat, ACS Nano, 2, 1487 (2008). [DOI: https://doi.org/10.1021/nn800251f]   DOI
17 C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, and Y. Feng, ACS Nano, 4, 6425 (2010). [DOI: https://doi.org/10.1021/nn102130m]   DOI
18 L. Liu and M. Yan, Angew. Chem. Int. Ed., 45, 6207 (2006). [DOI: https://doi.org/10.1002/anie.200602097]   DOI
19 H. Wang, J. Ren, A. Hlaing, and M. Yan, J. Colloid Interface Sci., 354, 160 (2011). [DOI: https://doi.org/10.1016/j.jcis.2010.10.018]   DOI
20 T. Kubo, X. Wang, Q. Tong, and M. Yan, Langmuir, 27, 9372 (2011). [DOI: https://doi.org/10.1021/la201324h]   DOI
21 J. Park, H.S.N. Jayawardena, X. Chen, K. W. Jayawardana, M. Sundhoro, E. Ada, and M. Yan, Chem. Commun., 51, 2882 (2015). [DOI: https://doi.org/10.1039/C4CC07936A]   DOI
22 A. Gollmer, J. Arnbjerg, F. H. Blaikie, B. W. Pedersen, T. Breitenbach, K. Daasbjerg, M. Glasius, and P. R. Ogilby, Photochem. Photobiol., 87, 671 (2011). [DOI: https://doi.org/10.1111/j.1751-1097.2011.00900.x]   DOI
23 Y. B. Tang, C. S. Lee, J. Xu, Z. T. Liu, Z. H. Chen, Z. He, Y. L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, ACS Nano, 4, 3482 (2010). [DOI: https://doi.org/10.1021/nn100449w]   DOI
24 G. Munuera, A. Navio, and V. Rives-Arnau, J. Chem. Soc., Faraday Trans. 1, 77, 2747 (1981). [DOI: https://doi.org/10.1039/f19817702747]   DOI
25 S. Wang, R. Gao, F. Zhou, and M. Selke, J. Mater. Chem., 14, 487 (2004). [DOI: https://doi.org/10.1039/b311429e]   DOI
26 X. Ragas, A. Jimenez-Banzo, D. Sanchez-Garcia, X. Batllori, and S. Nonell, Chem. Commun., 0, 2920 (2009). [DOI: https://doi.org/10.1039/b822776d]   DOI