• 제목/요약/키워드: hybrid genetic algorithm

검색결과 416건 처리시간 0.022초

Determination of the Weighting Parameters of the LQR System for Nuclear Reactor Power Control Using the Stochastic Searching Methods

  • Lee, Yoon-Joon;Cho, Kyung-Ho
    • Nuclear Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.68-77
    • /
    • 1997
  • The reactor power control system is described in the fashion of the order increased LQR system. To obtain the optimal state feedback gain vectors, the weighting matrix of the performance function should be determined. Since the contentional method has some limitations, stochastic searching methods are investigated to optimize the LQR weighting matrix using the modified genetic algorithm combined with the simulated annealing, a new optimizing tool named the hybrid MGA-SA is developed to determine the weighting parameters of the LQR system. This optimizing tool provides a more systematic approach in designing the LQR system. Since it can be easily incorporated with any forms of the cost function, it also provides the great flexibility in the optimization problems.

  • PDF

Feasibility study of improved particle swarm optimization in kriging metamodel based structural model updating

  • Qin, Shiqiang;Hu, Jia;Zhou, Yun-Lai;Zhang, Yazhou;Kang, Juntao
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.513-524
    • /
    • 2019
  • This study proposed an improved particle swarm optimization (IPSO) method ensemble with kriging model for model updating. By introducing genetic algorithm (GA) and grouping strategy together with elite selection into standard particle optimization (PSO), the IPSO is obtained. Kriging metamodel serves for predicting the structural responses to avoid complex computation via finite element model. The combination of IPSO and kriging model shall provide more accurate searching results and obtain global optimal solution for model updating compared with the PSO, Simulate Annealing PSO (SimuAPSO), BreedPSO and PSOGA. A plane truss structure and ASCE Benchmark frame structure are adopted to verify the proposed approach. The results indicated that the hybrid of kriging model and IPSO could serve for model updating effectively and efficiently. The updating results further illustrated that IPSO can provide superior convergent solutions compared with PSO, SimuAPSO, BreedPSO and PSOGA.

Multi-objective geometry optimization of composite sandwich shielding structure subjected to underwater shock waves

  • Zhou, Hao;Guo, Rui;Jiang, Wei;Liu, Rongzhong;Song, Pu
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.211-224
    • /
    • 2022
  • Multi-objective optimization was conducted to obtain the optimal configuration of a composite sandwich structure with honeycomb-foam hybrid core subjected to underwater shock waves, which can fulfill the demand for light weight and energy efficient design of structures against underwater blast. Effects of structural parameters on the dynamic response of the sandwich structures subjected to underwater shock waves were analyzed numerically, from which the correlations of different parameters to the dynamic response were determined. Multi-objective optimization of the structure subjected to underwater shock waves of which the initial pressure is 30 MPa was conducted based on surrogate modelling method and genetic algorithm. Moreover, optimization results of the sandwich structure subjected to underwater shock waves with different initial pressures were compared. The research can guide the optimal design of composite sandwich structures subjected to underwater shock waves.

Optimal design of a lightweight composite sandwich plate used for airplane containers

  • Al-Fatlawi, Alaa;Jarmai, Karoly;Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.611-622
    • /
    • 2021
  • Composite material-due to low density-causes weight savings, which results in lower fuel consumption of transport vehicles. The aim of the research was to change the existing base-plate of the aluminum airplane container with the composite sandwich plate in order to reduce the weight of the containers of cargo aircrafts. The newly constructed sandwich plate consists of aluminum honeycomb core and composite face-sheets. The face-sheets consist of glass or carbon or hybrid fiber layers. The orientations of the fibers in the face-sheets were 0°, 90° and ±45°. Multi-objective optimization method was elaborated for the newly constructed sandwich plates. Based on the design aim, the importance of the objective functions (weight and cost of sandwich plates) was the same (50%). During the optimization nine design constraints were considered: stiffness, deflection, facing stress, core shear stress, skin stress, plate buckling, shear crimping, skin wrinkling, intracell buckling. The design variables were core thickness and number of layers of the face-sheets. During the optimization both the Weighted Normalized Method of the Excel Solver and the Genetic Algorithm Solver of Matlab software were applied. The mechanical properties of composite face-sheets were calculated by Laminator software according to the Classical Lamination Plate Theory and Tsai-Hill failure criteria. The main added-value of the study is that the multi-objective optimization method was elaborated for the newly constructed sandwich structures. It was confirmed that the optimal new composite sandwich construction-due to weight savings and lower fuel consumption of cargo aircrafts - is more advantageous than conventional all-aluminum container.

하이브리드 퍼지뉴럴네트워크의 알고리즘과 구조 (Algorithm and Architecture of Hybrid Fuzzy Neural Networks)

  • 박병준;오성권;김현기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.372-372
    • /
    • 2000
  • In this paper, we propose Neuro Fuzzy Polynomial Networks(NFPN) based on Polynomial Neural Network(PNN) and Neuro-Fuzzy(NF) for model identification of complex and nonlinear systems. The proposed NFPN is generated from the mutually combined structure of both NF and PNN. The one and the other are considered as the premise part and consequence part of NFPN structure respectively. As the premise part of NFPN, NF uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. As the consequence part of NFPN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. NFPN is available effectively for multi-input variables and high-order polynomial according to the combination of NF with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. In order to evaluate the performance of proposed models, we use the nonlinear function. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously.

  • PDF

PC 클러스터 기반의 Multi-HPSO를 이용한 안전도 제약의 경제급전 (The Security Constrained Economic Dispatch with Line Flow Constraints using the Multi PSO Algorithm Based on the PC Cluster System)

  • 장세환;김진호;박종배;박준호
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1658-1666
    • /
    • 2009
  • This paper proposes an approach of Mult_HPSO based on the PC cluster system to reduce or remove the stagnation on an early convergence effect of PSO, reduce an execution time and improve a search ability on an optimal solution. Hybrid PSO(HPSO) is combines the PSO(Particle Swarm Optimization) with the mutation of conventional GA(Genetic Algorithm). The conventional PSO has operated a search process in a single swarm. However, Multi_PSO operates a search process through multiple swarms, which increments diversity of expected solutions and reduces the execution time. Multiple Swarms are composed of unsynchronized PC clusters. We apply to SCED(security constrained economic dispatch) problem, a nonlinear optimization problem, which considers line flow constraints and N-1 line contingency constraints. To consider N-1 line contingency in power system, we have chosen critical line contingency through a process of Screening and Selection based on PI(performace Index). We have applied to IEEE 118 bus system for verifying a usefulness of the proposed approaches.

근거리장 및 원거리장용 하이브리드 RFID 리더 안테나 (A Hybrid Reader Antenna for Near- and Far-Field RFID in UHF Band)

  • 이주용;한원근;박익모;추호성
    • 한국전자파학회논문지
    • /
    • 제20권2호
    • /
    • pp.174-182
    • /
    • 2009
  • 본 논문에서는 삼각형 패치와 서브 패치를 이용하여 국내 UHF RFID 대역에서 근거리장 영역과 원거리장 영역을 겸용하여 사용할 수 있는 안테나를 제안하였다. 제안된 안테나는 FR-4 기판에 마이크로스트립 패치로 인쇄되어 대량생산이 용이한 평면 구조이며, UHF RFID 주파수 대역(912 MHz)에서 동작하도록 설계하였다. 삼각형 패치를 이용하여 정면방향에서 원형편파 특성을 가지고 동작하며 서브 패치를 삽입하여 근거리장 영역에서 강하고 균일한 수직 자계를 형성 할 수 있도록 하였다. 측정 결과 제작된 안테나는 개구면에서 3 cm 떨어진 근거리장 영역에서 -25 dBA/m 이상의 수직 자계를 형성하며, 정면방향 원거리장에서 AR<3 dB의 원형편파를 복사하며 6 dBi의 복사 이득을 보였다.

Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber

  • Armaghani, Danial Jahed;Mirzaei, Fatemeh;Shariati, Mahdi;Trung, Nguyen Thoi;Shariati, Morteza;Trnavac, Dragana
    • Geomechanics and Engineering
    • /
    • 제20권3호
    • /
    • pp.191-205
    • /
    • 2020
  • Soil shear strength parameters play a remarkable role in designing geotechnical structures such as retaining wall and dam. This study puts an effort to propose two accurate and practical predictive models of soil shear strength parameters via hybrid artificial neural network (ANN)-based models namely genetic algorithm (GA)-ANN and particle swarm optimization (PSO)-ANN. To reach the aim of this study, a series of consolidated undrained Triaxial tests were conducted to survey inherent strength increase due to addition of polypropylene fibers to sandy soil. Fiber material with different lengths and percentages were considered to be mixed with sandy soil to evaluate cohesion (as one of shear strength parameter) values. The obtained results from laboratory tests showed that fiber percentage, fiber length, deviator stress and pore water pressure have a significant impact on cohesion values and due to that, these parameters were selected as model inputs. Many GA-ANN and PSO-ANN models were constructed based on the most effective parameters of these models. Based on the simulation results and the computed indices' values, it is observed that the developed GA-ANN model with training and testing coefficient of determination values of 0.957 and 0.950, respectively, performs better than the proposed PSO-ANN model giving coefficient of determination values of 0.938 and 0.943 for training and testing sets, respectively. Therefore, GA-ANN can provide a new applicable model to effectively predict cohesion of fiber-reinforced sandy soil.

근 실시간 조건을 달성하기 위한 효과적 속성 선택 기법 기반의 고성능 하이브리드 침입 탐지 시스템 (Efficient Feature Selection Based Near Real-Time Hybrid Intrusion Detection System)

  • 이우솔;오상윤
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제5권12호
    • /
    • pp.471-480
    • /
    • 2016
  • 최근 국가 기반 시스템, 국방 및 안보 시스템 등에 대한 사이버 공격의 피해 규모가 점차 커지고 있으며, 군에서도 사이버전에 대한 중요성을 인식하고 전 평시 구분 없이 대비하고 있다. 이에 네트워크 보안에서 탐지와 대응에 핵심적인 역할을 하는 침입 탐지 시스템의 중요성이 증대되고 있다. 침입 탐지 시스템은 탐지 방법에 따라 오용 탐지, 이상 탐지 방식으로 나뉘는데, 근래에는 두 가지 방식을 혼합 적용한 하이브리드 침입 탐지 방식에 대한 연구가 진행 중이다. 그렇지만 기존 연구들은 높은 계산량이 요구된다는 점에서 근 실시간 네트워크 환경에 부적합하다는 문제점이 있었다. 본 논문에서는 기존의 하이브리드 침입 탐지 시스템의 성능 문제를 보완할 수 있는 효과적인 속성 선택 기법을 적용한 의사 결정 트리와 가중 K-평균 알고리즘 기반의 고성능 하이브리드 침입 탐지 시스템을 제안하였다. 상호 정보량과 유전자 알고리즘 기반의 속성 선택 기법을 적용하여 침입을 더 빠르고 효율적으로 탐지할 수 있으며, 오용 탐지 모델과 이상 탐지 모델을 위계적으로 결합하여 구조적으로 고도화된 하이브리드 침입 탐지 시스템을 제안하였다. 실험을 통해 제안한 하이브리드 침입 탐지 시스템은 98.68%로 높은 탐지율을 보장함과 동시에, 속성 선택 기법을 적용하여 고성능 침입 탐지를 수행할 수 있음을 검증하였다.

유전자 알고리즘 및 국소 적응 오퍼레이션 기반의 의료 진단 문제 자동화 기법 연구 (Medical Diagnosis Problem Solving Based on the Combination of Genetic Algorithms and Local Adaptive Operations)

  • 이기광;한창희
    • 지능정보연구
    • /
    • 제14권2호
    • /
    • pp.193-206
    • /
    • 2008
  • 의료 진단 문제는 기정의된 특성치들로 표현되는 환자의 상태 데이터로부터 병의 유무를 판단하는 일종의 분류 문제로 간주할 수 있다. 본 연구는 혼용 유전자 알고리즘 기반의 분류방법을 도입함으로써 의료 진단 문제와 같은 다차원의 패턴 분류 문제를 해결할 수 있는 방안을 제안하고 있다. 일반적으로 분류 문제는 데이터 패턴에 존재하는 여러 클래스 간 구분경계를 생성하는 접근방법을 사용하는데, 이를 위해 본 연구에서는 일단의 영역 에이전트들을 도입하여 이들을 유전자 알고리즘 및 국소 적응조작을 혼용함으로써 데이터 패턴에 적응하도록 유도하고 있다. 일반적인 유전자 알고리즘의 진화단계를 거친 에이전트들에 적용되는 국소 적응조작은 영역 에이전트의 확장, 회피 및 재배치로 이루어지며, 각 에이전트의 적합도에 따라 이들 중 하나가 선택되어 해당 에이전트에 적용된다. 제안된 의료 진단용 분류 방법은 UCI 데이터베이스에 있는 잘 알려진 의료 데이터, 즉 간, 당뇨, 유방암 관련 진단 문제에 적용하여 검증하였다. 그 결과, 기존의 대표적인 분류기법인 최단거리이웃방법(the nearest neighbor), C4.5 알고리즘에 의한 의사 결정트리(decision tree) 및 신경망보다 우수한 진단 수행도를 나타내었다.

  • PDF