• 제목/요약/키워드: hybrid finite element model

검색결과 183건 처리시간 0.028초

운전석 에어백을 장착한 중형 트럭의 승객거동해석을 위한 유한요소 모델의 개발 (Development of a Finite Element Model for Studying the Occupant Behavior of a Mid-Size Truck with a Driver Side Airbag)

  • 홍창섭;오재윤;이대창
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.220-225
    • /
    • 2000
  • This paper develops a finite element model for studying occupant behavior of a mid-size truck equipped with a driver side airbag. The developed model simulates an occupant behavior using PAM-CRASH/PAM-SAFE in super computer SP2. The model is developed based on a sled test. A 50% hybrid dummy III is used for measuring head and chest accelerations and femur loads, and major injury coefficients such as HIC, CA and femur load. Inferior components such as foot rest, seat, kneebolster, crash pad, etc. are roughly modeled and defined by a rigid material model. And contact type II is used for detecting a contact with dummy. Contact type II definition uses force-deflection relationship of each body Such components as steering column which directly affect on the occupant injuy are modeled in detail and defined by an elastic-plastic material model. Airbag cushion is modeled using rivet elements. Airbag cover groove is modeled using rivet elements. Airbag tether is modeled as nonlinear bar elements. Airbag model has two vent holes to ventilating the exploded gas. Airbag is folded close to the real airbag folding procedure, and folded cautiously in order not to have initial penetration. A vehicle pulse acquired from 31mph frontal barrier test is used as input signal for the simulation. The simulation conditions are tuned to the sled test ones. The measured dummy accelerations and major injury coefficients, and filmed dummy behavior and airbag inflation process using high speed camera are compared to the simulation results to verify the developed finite element model.

  • PDF

Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars

  • Yoo, Doo-Yeol;Banthia, Nemkumar
    • Computers and Concrete
    • /
    • 제16권5호
    • /
    • pp.759-774
    • /
    • 2015
  • This study simulates the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) beams reinforced with steel and glass fiber-reinforced polymer (GFRP) rebars. For this, micromechanics-based modeling was first carried out on the basis of single fiber pullout models considering inclination angle. Two different tension-softening curves (TSCs) with the assumptions of 2-dimensional (2-D) and 3-dimensional (3-D) random fiber orientations were obtained from the micromechanics-based modeling, and linear elastic compressive and tensile models before the occurrence of cracks were obtained from the mechanical tests and rule of mixture. Finite element analysis incorporating smeared crack model was used due to the multiple cracking behaviors of structural UHPFRC beams, and the characteristic length of two times the element width (or two times the average crack spacing at the peak load) was suggested as a result of parametric study. Analytical results showed that the assumption of 2-D random fiber orientation is appropriate to a non-reinforced UHPFRC beam, whereas the assumption of 3-D random fiber orientation is suitable for UHPFRC beams reinforced with steel and GFRP rebars due to disorder of fiber alignment from the internal reinforcements. The micromechanics-based finite element analysis also well predicted the serviceability deflections of UHPFRC beams with GFRP rebars and hybrid reinforcements.

실물크기 구조물의 강제진동 실험을 통한 시스템 식별 (System Identification of Real-Scale Structures Using Forced Vibration Test)

  • 윤경조;이상현;박은천;유은종;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.195-200
    • /
    • 2007
  • System identification of real-scale structure is performed using forced vibration test. There exist various techniques available for identifying the dynamic characteristis of structures using dynamic and static measurements. In this study, The finite element(FE) model of the structure is analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. forced vibration tests showed that Hybrid Mass Damper induced floor responses coincided with the earthquake induced ones which was numerically calculated based on the updated FE model.

  • PDF

Finite element model updating of a cable-stayed bridge using metaheuristic algorithms combined with Morris method for sensitivity analysis

  • Ho, Long V.;Khatir, Samir;Roeck, Guido D.;Bui-Tien, Thanh;Wahab, Magd Abdel
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.451-468
    • /
    • 2020
  • Although model updating has been widely applied using a specific optimization algorithm with a single objective function using frequencies, mode shapes or frequency response functions, there are few studies that investigate hybrid optimization algorithms for real structures. Many of them did not take into account the sensitivity of the updating parameters to the model outputs. Therefore, in this paper, optimization algorithms and sensitivity analysis are applied for model updating of a real cable-stayed bridge, i.e., the Kien bridge in Vietnam, based on experimental data. First, a global sensitivity analysis using Morris method is employed to find out the most sensitive parameters among twenty surveyed parameters based on the outputs of a Finite Element (FE) model. Then, an objective function related to the differences between frequencies, and mode shapes by means of MAC, COMAC and eCOMAC indices, is introduced. Three metaheuristic algorithms, namely Gravitational Search Algorithm (GSA), Particle Swarm Optimization algorithm (PSO) and hybrid PSOGSA algorithm, are applied to minimize the difference between simulation and experimental results. A laboratory pipe and Kien bridge are used to validate the proposed approach. Efficiency and reliability of the proposed algorithms are investigated by comparing their convergence rate, computational time, errors in frequencies and mode shapes with experimental data. From the results, PSO and PSOGSA show good performance and are suitable for complex and time-consuming analysis such as model updating of a real cable-stayed bridge. Meanwhile, GSA shows a slow convergence for the same number of population and iterations as PSO and PSOGSA.

항만 공진에 대한 복합요소 수치모형의 민감도 분석 (Sensitivity Analysis on Hybrid Element Model for Harbor Oscillation)

  • 정원무;박우선
    • 한국해안해양공학회지
    • /
    • 제8권2호
    • /
    • pp.174-184
    • /
    • 1996
  • 본 연구에서는 완전개방 직사각형 항만을 대상으로 항만 부진동 해석에 많이 사용되는 복합요소 수치모형의 실제 적용시에 관계되는 주요인자에 대한 민감도 해석을 수행하였다. 그 결과 유한요소 영역은 수심 변화가 크지 않은 곳까지 확장하는 것이 바람직한 것으로 나타났으며, 해석해 영역의 수심은 두 영역의 경계면을 따른 평균수심을 사용하는 것이 적절한 것으로 나타났다. 해석해의 Fourier 성분수는 일정수심의 단순한 항만에서는 큰 의미가 없으나 복잡한 형상의 변동수심의 항만에서는 그 중요성이 증가할 것으로 예상된다. 입사파향은 제1 공진 모드에는 큰 영향을 주지 않으나 수심 경사가 커질수록 그 영향이 증대되며, 특히 고차 모드는 큰 영향을 받게 되는 것으로 나타났다.

  • PDF

실차 소음 최적화를 위한 주파수 응답 함수 합성법의 적용 (Application of FRF-Based Substructuring to Optimization of Interior Noise in Vehicle)

  • 정원태;강연준;김상훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.140-143
    • /
    • 2005
  • The hybrid CAE/CAT methods are widely applied to product development in various fields because this method can predict the response of the whole system when a part of the system is changed. Especially, the hybrid CAE/CAT method is very useful to predict tile vehicle NVH characteristics after changing some parts of the vehicle. Target parts can be established on the basis of test models and FE models of the prototype constructed in the planning stage of car development. In this study, the topic was focused on the proper test-based FBS application process to predict vehicle NVH characteristic. First, the test-based FBS method was apply to vehicle substructure and car-body. And then the test-based model was replaced with FE model to apply hybrid CAE/CAT method. The replaced FE model was modified through the optimization process. The interior noise in vehicle during the drive was predicted with Modified FE model, then the predicted results were verified by experimenting with actual modified model.

  • PDF

조선용 강재 A-Grade의 Fillet 용접에 대한 FCAW 및 하이브리드 용접부의 열적 특성 비교 (The Comparison of Thermal Characteristics in FCAW & Hybrid Welded Joint for Fillet Welding of Ship Structure A-Grade Steel)

  • 오종인;박호경;;정은영;방한서
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.48-50
    • /
    • 2006
  • Recently many research are going on in the field of application of Laser-Arc hybrid welding for superstructures such as ship-structures, transport vehicles etc. however, the study on heat distribution and welding residual stress of hybrid weld by numerical simulation leaves much to be desired. Therefore a Finite Element based numerical comparison of heat distribution and thermal history in both the FCAW and Hybrid welding been made in this study. Based on this thermal outputs from the present model could be sequentially coupled to suitable mechanical models to predict appropriate mechanical characteristics such as residual stress.

  • PDF

A hybrid approach to predict the bearing capacity of a square footing on a sand layer overlying clay

  • Erdal Uncuoglu;Levent Latifoglu;Zulkuf Kaya
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.561-575
    • /
    • 2023
  • This study investigates to provide a fast solution to the problem of bearing capacity in layered soils with easily obtainable parameters that does not require the use of any charts or calculations of different parameters. Therefore, a hybrid approach including both the finite element (FE) method and machine learning technique have been applied. Firstly, a FE model has been generated which is validated by the results of in-situ loading tests. Then, a total of 192 three-dimensional FE analyses have been performed. A data set has been created utilizing the soil properties, footing sizes, layered conditions used in the FE analyses and the ultimate bearing capacity values obtained from the FE analyses to be used in multigene genetic programming (MGGP). Problem has been modeled with five input and one output parameter to propose a bearing capacity formula. Ultimate bearing capacity values estimated from the proposed formula using data set consisting of 20 data independent of total data set used in MGGP modelling have been compared to the bearing capacities calculated with semi-empirical methods. It was observed that the MGGP method yielded successful results for the problem considered. The proposed formula provides reasonable predictions and efficient enough to be used in practice.

영구자석 바이어스 자기부상 구동기 설계 및 해석 (Design and Analysis of a Permanent Magnet Biased Magnetic Levitation Actuator)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.875-880
    • /
    • 2016
  • A new hybrid permanent magnet biased magnetic levitation actuator (maglev) is developed. This new maglev actuator is composed of two C-core electromagnetic cores separated with two permanent magnets. Compared to the conventional hybrid maglev actuators, the new actuator has unique flux paths such that bias flux paths are separated with control flux paths. The control flux paths have minimum reluctances only developed by air gaps, so the currents to produce control fluxes can be minimized. The gravity load can be compensated with the permanent magnet bias fluxes developed at off-centered air gap positions while external disturbances are controlled with control fluxes by currents. The consumed power to operate this levitation system can be minimized. 1-D magnetic circuit model is developed for this model such that the flux densities and magnetic forces are extensively analyzed. 3-D finite element model is also developed to analyze the performances of the maglev actuator.

Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification

  • Pandey, Harsh Kumar;Hirwani, Chetan Kumar;Sharma, Nitin;Katariya, Pankaj V.;Dewangan, Hukum Chand;Panda, Subrata Kumar
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.419-429
    • /
    • 2019
  • The effect of an increasing percentage of nanofiller (glass cenosphere) with Glass/Epoxy hybrid composite curved panels modeled mathematically using the multiscale concept and subsequent numerical eigenvalues of different geometrical configurations (cylindrical, spherical, elliptical, hyperboloid and flat) predicted in this research article. The numerical model of Glass/Epoxy/Cenosphere is derived using the higher-order polynomial type of kinematic theory in association with isoparametric finite element technique. The multiscale mathematical model utilized for the customized computer code for the evaluation of the frequency data. The numerical model validation and consistency verified with experimental frequency data and convergence test including the experimental elastic properties. The experimental frequencies of the multiscale nano filler-reinforced composite are recorded through the impact hammer frequency test rig including CDAQ-9178 (National Instruments) and LABVIEW virtual programming. Finally, the nano cenosphere filler percentage and different design associated geometrical parameters on the natural frequency data of hybrid composite structural configurations are illustrated through a series of numerical examples.