Browse > Article
http://dx.doi.org/10.12989/anr.2019.7.6.419

Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification  

Pandey, Harsh Kumar (Dr. C.V. Raman Institute of Science & Technology)
Hirwani, Chetan Kumar (Department Mechanical Engineering, Aditya Engineering College)
Sharma, Nitin (School of Mechanical Engineering, KIIT (Deemed to be University))
Katariya, Pankaj V. (Department Mechanical Engineering, NIT Rourkela)
Dewangan, Hukum Chand (Department Mechanical Engineering, NIT Rourkela)
Panda, Subrata Kumar (Department Mechanical Engineering, NIT Rourkela)
Publication Information
Advances in nano research / v.7, no.6, 2019 , pp. 419-429 More about this Journal
Abstract
The effect of an increasing percentage of nanofiller (glass cenosphere) with Glass/Epoxy hybrid composite curved panels modeled mathematically using the multiscale concept and subsequent numerical eigenvalues of different geometrical configurations (cylindrical, spherical, elliptical, hyperboloid and flat) predicted in this research article. The numerical model of Glass/Epoxy/Cenosphere is derived using the higher-order polynomial type of kinematic theory in association with isoparametric finite element technique. The multiscale mathematical model utilized for the customized computer code for the evaluation of the frequency data. The numerical model validation and consistency verified with experimental frequency data and convergence test including the experimental elastic properties. The experimental frequencies of the multiscale nano filler-reinforced composite are recorded through the impact hammer frequency test rig including CDAQ-9178 (National Instruments) and LABVIEW virtual programming. Finally, the nano cenosphere filler percentage and different design associated geometrical parameters on the natural frequency data of hybrid composite structural configurations are illustrated through a series of numerical examples.
Keywords
modal responses; nano glass cenosphere; hybrid composite; FEM; experimental analysis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063   DOI
2 Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B: Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032   DOI
3 Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088   DOI
4 Bhattacharjee, A. and Nanda, B.K. (2018), "Study on the influence of design parameters on the damping property of glass fiber reinforced epoxy composite", IOP Conference Series: Materials Science and Engineering, 348(1), IOP Publishing. https://doi.org/10.1088/1757-899X/348/1/012017
5 Bhimaraddi, A. (1991), "Free vibration analysis of doubly curved shallow shells on rectangular planform using three-dimensional elasticity theory", Int. J. Solids Struct., 27(7), 897-913. https://doi.org/10.1016/0020-7683(91)90023-9   DOI
6 Birla, S., Mondal, D.P., Das, S., Kashyap, D.K. and Ch, V.A. (2017), "Effect of cenosphere content on the compressive deformation behaviour of aluminum-cenosphere hybrid foam", Mater. Sci. Eng.: A, 685, 213-226. https://doi.org/10.1016/j.msea.2016.12.131   DOI
7 Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., Int. J., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755   DOI
8 Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2016), "Beam buckling analysis by nonlocal integral elasticity finite element method", Int. J. Struct. Stabil. Dyn., 16(6), 1550015. https://doi.org/10.1142/S0219455415500157   DOI
9 Thakur, S. and Chauhan, S.R. (2015), "Experimental investigation of cenosphere particulate filled E-glass fiber reinforced vinylester composites under dry and water lubricated sliding conditions", Ind. J. Eng. and Mater. Sci., 22(6), 669-678.
10 Topal, U. (2006), "Mode-frequency analysis of laminated spherical shell", Department of Civil Engineering Karadeniz Technical University. https://doi.org/10.1.1.542.6218
11 Topal, U. (2009), "Frequency optimization of laminated general quadrilateral and trapezoidal thin plates", Mater. Des., 30(9), 3643-3652. https://doi.org/10.1016/j.matdes.2009.02.014   DOI
12 Topal, U. and Uzman, U. (2006), "Free vibration analysis of laminated plates using first-order shear deformation theory", Vibration Problems ICOVP 2006, Dordrecht, Netherlands pp. 493-498.
13 Xia, X., Chen, X., Zhang, Z., Chen, X., Zhao, W., Liao, B. and Hur, B. (2014), "Compressive properties of closed-cell aluminum foams with different contents of ceramic microspheres", Mater. Des., 56, 353-358. https://doi.org/10.1016/j.matdes.2013.11.040   DOI
14 Ghannadpour, S.A.M. and Bijan, M. (2011), "Vibration of nonlocal euler beams using Chebyshev polynomials", Key Eng.Mater., 471-472, 1016-1021. https://doi.org/10.4028/www.scientific.net/KEM.471-472.1016   DOI
15 Zhang, Q., Lin, Y., Chi, H., Chang, J. and Wu, G. (2018), "Quasistatic and dynamic compression behavior of glass cenospheres/5A03 syntactic foam and its sandwich structure", Compos. Struct., 183, 499-509. https://doi.org/10.1016/j.compstruct.2017.05.024   DOI
16 Crawley, E.F. (1979), "The natural modes of graphite/epoxy cantilever plates and shells, J. Compos. Mater., 13(3), 195-205. https://doi.org/10.1177/002199837901300302   DOI
17 Dalbehera, S. (2016), "Effect of Cenosphere on the Mechanical and Tribological Properties of Natural Fiber Reinforced Hybrid Composite, Ph.D. Thesis.
18 Ferreira, J.A.M., Borrego, L.P., Costa, J.D.M. and Capela, C. (2013), "Fatigue behaviour of nanoclay reinforced epoxy resin composites", Compos. Part B: Eng., 52, 286-291. https://doi.org/10.1016/j.compositesb.2013.04.003   DOI
19 Ghannadpour, S.A.M. (2018a), "A Variational Formulation to Find Finite Element Bending, Buckling and Vibration Equations of Nonlocal Timoshenko Beams", Iran. J. Sci. Technol., Transact. Mech. Eng., 1-10. https://doi.org/10.1007/s40997-018-0172-y
20 Ghannadpour, S.A.M. (2018b), "Ritz method application to bending, buckling and vibration analyses of Timoshenko beams via nonlocal elasticity", J. Appl. Computat. Mech., 4(1), 16-26. https://doi.org/10.22055/JACM.2017.21915.1120
21 Ghannadpour, S.A.M. and Mohammadi, B. (2010), "Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory using Chebyshev polynomials", Adv. Mater. Res., 123, 619-622. https://doi.org/10.4028/www.scientific.net/AMR.123-125.619   DOI
22 Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024   DOI
23 Jena, H., Pradhan, A.K. and Pandit, M.K. (2014), "Effect of cenosphere filler on damping properties of bamboo-epoxy laminated composites", Adv. Compos. Lett., 23(1), 096369351402300103. https://doi.org/10.1177/096369351402300103
24 Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324   DOI
25 Katona, B., Szebenyi, G. and Orbulov, I.N. (2017), "Fatigue properties of ceramic hollow sphere filled aluminium matrix syntactic foams", Mater. Sci. Eng. A, 679, 350-357. https://doi.org/10.1016/j.msea.2016.10.061   DOI
26 Khoshnoud, P. and Abu-Zahra, N. (2015), "Effect of cenosphere fly ash on the thermal, mechanical, and morphological properties of rigid PVC foam composites", J. Res. Updates Polym. Sci., 4(1). https://doi.org/10.6000/1929-5995.2015.04.01.1
27 Kushnoore, S., Varma, G.A., Akhil, K., Jathin, C. and Reddy, M.M. (2018), "Experimental investigation on mechanical behaviour of cenosphere reinforced epoxy composites", Int. J. Mech. Eng. Technol., 9(4), 73-81.
28 Lin, Y., Zhang, Q., Ma, X. and Wu, G. (2016), "Mechanical behavior of pure Al and Al-Mg syntactic foam composites containing glass cenospheres", Compos. Part A: Appl. Sci. Manuf., 87, 194-202. https://doi.org/10.1016/j.compositesa.2016.05.001   DOI
29 Liu, C.F. and Huang, C.H. (1996), "Free vibration of composite laminated plates subjected to temperature changes", Comput. Struct., 60(1), 95-101. https://doi.org/10.1016/0045-7949(95)00358-4   DOI
30 Mehri, M., Asadi, H. and Wang, Q. (2016), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Methods Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017   DOI
31 Jones, R.M. (1975), Mechanics of Composite Materials, Taylor & Francis, PA, USA.
32 Naidu, N.S. and Sinha, P.K. (2007), "Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments", Compos. Struct., 77(4), 475-483. https://doi.org/10.1016/j.compstruct.2005.08.002   DOI
33 Arani, A.G., Kolahchi, R. and Maraghi, Z.K. (2013), "Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory", Appl. Math. Model., 37(14-15), 7685-7707. https://doi.org/10.1016/j.apm. 2013.03.020   DOI
34 Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787   DOI
35 Arani, A.G., Jafari, G.S. and Kolahchi, R. (2017), "Nonlinear vibration analysis of viscoelastic micro nano-composite sandwich plates integrated with sensor and actuator", Microsyst. Technol., 23(5), 1509-1535. https://doi.org/10.1007/s00542-016-3095-9   DOI
36 Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852   DOI
37 Mohammadi, B. and Ghannadpour, S.A.M. (2011), "Energy approach vibration analysis of nonlocal Timoshenko beam theory", Procedia Eng., 10, 1766-1771. https://doi.org/10.1016/j.proeng.2 011.04.294   DOI
38 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells, (2nd Ed.), CRC Press, Bocaraton, FL, USA.
39 Reegan, S. and Arulmurugan, S. (2016), "Vibration and damping Property Analysis of nanoclay filled polymer composites", Int. J. Emerg. Technol. Comput. Sci. Electron. (IJETCSE).
40 Rohatgi, P.K., Kim, J.K., Gupta, N., Alaraj, S. and Daoud, A. (2006), "Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique", Compos. Part A: Appl. Sci. Manuf., 37(3), 430-437. https://doi.org/10.1016/j.compositesa.2005.05.047   DOI
41 Sivasaravanan, S. and Raja, V.K.B. (2014), "Impact properties of epoxy/glass fiber/nano clay composite materials", IOSR J. Mech. Civ. Eng., 39-41.
42 Szekrenyes, A. (2014), "Coupled flexural-longitudinal vibration of delaminated composite beams with local stability analysis", J. Sound Vib., 333(20), 5141-5164. https://doi.org/10.1016/j.jsv.2014.05.021   DOI
43 Szekrenyes, A. (2016), "Natural vibration-induced parametric excitation in delaminated Kirchhoff plates", J. Compos. Mater., 50(17), 2337-2364. https://doi.org/10.1177/0021998315603111   DOI
44 Bathe, K.J. (2002), Finite Element Procedures, Prentice-Hall of India Private Ltd., New Delhi, India.
45 Asadi, H., Bodaghi, M., Shakeri, M. and Aghdam, M.M. (2013), "On the free vibration of thermally pre/post-buckled shear deformable SMA hybrid composite beams", Aerosp. Sci. Technol., 31(1), 73-86. https://doi.org/10.1016/j.ast.2013.09.008   DOI