• 제목/요약/키워드: huntington's disease

검색결과 40건 처리시간 0.036초

Polyglutamine Residues from Machado-Joseph Disease Gene Enhance Formation of Aggregates of GST-Polyglutamine Fusion Protein in E. coli

  • Rhim, Hyang-Shuk;Bok, Kyoung-Sook;Chang, Mi-Jeong;Kim, In-Kyung;Park, Sung-Sup;Kang, Seong-Man
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권6호
    • /
    • pp.663-668
    • /
    • 1998
  • Several neurodegenerative diseases such as Huntington's disease, dentatorubralpallidoluysian atrophy, spinobulbar muscular atrophy, Machado-Joseph disease, and spinocerebellar ataxias type 1 are associated with the aggregation of expanded glutamine repeats within their proteins. Generally, in clinically affected individuals, the expansion of the polyglutamine sequences is beyond 40 residues. To address the length of polyglutamine that forms aggregation, we have constructed plasmids encoding glutathione S-transferase (GST) Machado-Joseph disease gene fusion proteins containing polyglutamine and investigated the formation of aggregates in E. coli. Surprisingly, even $(Gin)_8$, in the normal range as well as $(Gin)_{65}$ in the pathogenic range enhanced the formation of insoluble protein aggregates, whereas $(Ser)_8$, and $(Aia)_8$, did not form aggregates. Our results indicate that the formation of protein aggregates in GST-polyglutamine proteins is specifically mediated by the polyglutamine repeat sequence within their protein structure. Our study may contribute to the understanding of the molecular mechanism of the formation of protein aggregates in neurodegenerative disorders and the development of preventative strategies.

  • PDF

글루타메이트로 유발한 세포독성에 대한 삼채추출물의 뇌세포 보호 효과 (Effects of Allium hookeri Extracts on Glutamate-induced Neurotoxicity in HT22 Cells)

  • 김지윤;고원민;김애정
    • 생약학회지
    • /
    • 제48권1호
    • /
    • pp.31-37
    • /
    • 2017
  • Glutamate-induced oxidative stress results in neuro-degenerative disorders in many central nervous system (CNS) such as Alzheimer's disease, ischemia, Huntington's disease, and Parkinson's disease. Our study was performed to investigate neuroprotective effects of Allium hookeri extracts (leaf, root, and whole) on glutamate-induced HT22 cells. In this study, ethanol extract of A. hookeri showed the outstanding neuroprotective effect in HT22 cells. In addition, we found that ethanol extract of A. hookeri root increased heme oxygenase (HO)-1 in HT22 cells. Moreover, ethanol extract of A. hookeri root also upregulated nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2) in HT22 cells. These results demonstrate that ethanol extract of A. hookeri root contributes neuroprotective effects against glutamate-induced oxidative stress in HT22 cells, via Nrf2-mediated HO-1 expression. Our study suggests that ethanol extract of A. hookeri root could be the potential agent for the treatment of many neuro-degenerative diseases.

삼핵산 반복서열 질환인 헌팅톤병, 척수소뇌성 운동실조증, X-염색체 취약 증후군의 착상전 유전진단 방법에 대한 연구 (Optimized Methods of Preimplantation Genetic Diagnosis for Trinucleotide Repeat Diseases of Huntington's Disease, Spinocerebellar Ataxia 3 and Fragile X Syndrome)

  • 김민지;이형송;임천규;조재원;김진영;궁미경;송인옥;강인수;전진현
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제34권3호
    • /
    • pp.179-188
    • /
    • 2007
  • 목 적: 본 연구에서는 삼핵산 반복서열 확장에 의해 발병하는 헌팅톤병, 척수소뇌성 운동실조증과 X-염색체 취약 증후군 등에 대한 착상전 유전진단을 시행하기 위한 전임상 검사에서 진단 방법을 최적화하는 과정을 통해 얻은 결과들에 대해 기술하고자 한다. 연구방법: 단일 림프구를 이용한 임상전 검사에서는 서로 다른 allele를 갖고 있는 환자의 단일 세포를 사용하였으며, 헌팅톤병과 척수소뇌성 운동실조증에서는 fluorescent semi-nested PCR 시행 후 fragment analysis를 수행하였다. X-염색체 취약 증후군의 경우 multiple displacement amplification (MDA) 방법을 이용한 whole genome amplification에서 얻어진 MDA 산물로 fluorescent PCR을 시도하였다. 결 과: 헌팅톤병의 경우 단일 림프구 시료 모두에서 CAG repeats 증폭에 성공하여 100.0%의 증폭성공률과 14.0% allele drop-out (ADO) rate를, 척수소뇌성 운동실조증의 경우 94.7%의 증폭성공률과 5.6%의 ADO rate을 나타내었다. X-염색체 취약 증후군의 경우 fluorescent semi-nested PCR 방법만으로는 단일 림프구 시료에서 CGG repeats이 증폭되지 않았지만, MDA 산물을 이용한 fluorescent PCR 결과 84.2%의 증폭성공률과 31.3%의 ADO rate을 얻을 수 있었다. 결 론: 본 연구를 통해 헌팅톤병과 척수소뇌성 운동실조증의 착상전 유전진단에는 fluorescent semi-nested PCR 방법의 적용이 가능함을 확인하였으며, X-염색체 취약 증후군의 경우에는 MDA를 이용한 fluorescent PCR 방법을 사용해야 함을 알 수 있었다. 유전자의 변이에 대한 분석이 쉽지 않은 단일 유전자 이상에 대한 착상전 유전진단의 경우 다양한 유전자 분석 방법을 이용한 단일 세포에서의 진단 방법의 최적화 연구가 필수적으로 선행되어야 할 것으로 사료된다.

Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia

  • Kim, MinJeong;Li, Yong-Xin;Dewapriya, Pradeep;Ryu, BoMi;Kim, Se-Kwon
    • BMB Reports
    • /
    • 제46권8호
    • /
    • pp.398-403
    • /
    • 2013
  • Inflammatory conditions mediated by activated microglia lead to chronic neuro-degenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. This study was conducted to determine the effect of floridoside isolated from marine red algae Laurencia undulata on LPS (100 ng/ml) activated inflammatory responses in BV-2 microglia cells. The results show that floridoside has the ability to suppress pro-inflammatory responses in microglia by markedly inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS). Moreover, floridoside down-regulated the protein and gene expression levels of iNOS and COX-2 by significantly blocking the phosphorylation of p38 and ERK in BV-2 cells. Collectively, these results indicate that floridoside has the potential to be developed as an active agent for the treatment of neuro-inflammation.

Effect of Neurotrophic Factors on Neuronal Stem Cell Death

  • KimKwon, Yun-Hee
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.87-93
    • /
    • 2002
  • Neural cell survival is an essential concern in the aging brain and many diseases of the central nervous system. Neural transplantation of the stem cells are already applied to clinical trials for many degenerative neurological diseases, including Huntington's disease, Parkinson's disease, and strokes. A critical problem of the neural transplantation is how to reduce their apoptosis and improve cell survival. Neurotrophic factors generally contribute as extrinsic cues to promote cell survival of specific neurons in the developing mammalian brains, but the survival factor for neural stem cell is poorly defined. To understand the mechanism controlling stem cell death and improve cell survival of the transplanted stem cells, we investigated the effect of plausible neurotrophic factors on stem cell survival. The neural stem cell, HiB5, when treated with PDGF prior to transplantation, survived better than cells without PDGF. The resulting survival rate was two fold for four weeks and up to three fold for twelve weeks. When transplanted into dorsal hippocampus, they migrated along hippocampal alveus and integrated into pyramidal cell layers and dentate granule cell layers in an inside out sequence, which is perhaps the endogenous pathway that is similar to that in embryonic neurogenesis. Promotion of the long term-survival and differentiation of the transplanted neural precursors by PDGF may facilitate regeneration in the aging adult brain and probably in the injury sites of the brain.

Coenzyme Q10: a progress towards the treatment of neurodegenerative disease

  • Kumar, Peeyush;Kumar, Pramod;Ram, Alpana;Kuma, Mithilesh;Kumar, Rajeev
    • Advances in Traditional Medicine
    • /
    • 제10권4호
    • /
    • pp.239-253
    • /
    • 2010
  • Coenzyme $Q_{10}$ ($CoQ_{10}$, or ubiquinone) is an electron carrier of the mitochondrial respiratory chain (electron transport chain) with antioxidant properties. In view of the involvement of $CoQ_{10}$ in oxidative phosphorylation and cellular antioxidant protection a deficiency in this quinone would be expected to contribute to disease pathophysiology by causing a failure in energy metabolism and antioxidant status. Indeed, a deficit in $CoQ_{10}$ status has been determined in a number of neuromuscular and neurodegenerative disorders. Primary disorders of $CoQ_{10}$ biosynthesis are potentially treatable conditions and therefore a high degree of clinical awareness about this condition is essential. A secondary loss of $CoQ_{10}$ status following HMG-CoA reductase inhibitor (statins) treatment has been implicated in the pathophysiology of the myotoxicity associated with this pharmacotherapy. $CoQ_{10}$ and its analogue, idebenone, have been widely used in the treatment of neurodegenerative and neuromuscular disorders. These compounds could potentially play a role in the treatment of mitochondrial disorders, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Friedreich's ataxia, and other conditions which have been linked to mitochondrial dysfunction. This article reviews the physiological roles of $CoQ_{10}$, as well as the rationale and the role in clinical practice of $CoQ_{10}$ supplementation in different neurological diseases, from primary $CoQ_{10}$ deficiency to neurodegenerative disorders. These will help in future for treatment of patients suffering from neurodegenerative disease.

Functional Expression of the Internal Rotenone-Insensitive NADH-Quinone Oxidoreductase (NDI1) Gene of Saccharomyces cerevisiae in Human HeLa Cells

  • Seo, Byoung-Boo
    • 한국수정란이식학회지
    • /
    • 제25권1호
    • /
    • pp.35-42
    • /
    • 2010
  • Many studies propose that dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I) is associated with neurodegenerative disorders, such as Parkinson's disease and Huntington's disease. Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. With a recombinant adeno-associated virus vector carrying the NDI1 gene (rAAV-NDI1) as the gene delivery method, we were able to attain high transduction efficiencies even in the human epithelial cervical cancer cells that are difficult to transfect by lipofection or calcium phosphate precipitation methods. Using a rAAV-NDI1, we demonstrated that the Ndi1 enzyme is successfully expressed in HeLa cells. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced HeLa cells were not affected by rotenone which is inhibitor of complex I, but was inhibited by flavone and antimycin A. The NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. In particular, in the NDI1-transduced cells, the yeast enzyme becomes integrated into the human respiratory chain. It is concluded that the NDI1 gene provides a potentially useful tool for gene therapy of mitochondrial diseases caused by complex I deficiency.

소뇌경색의 후유증으로 발생한 지연성 혈관 무도병 증례 보고 : 협진 치험 1례 (A Case Report of a Delayed Vascular Chorea Patient Treated with Sukjihwangbogan-tang-gagam)

  • 옥효준;박영화;임보라;권도익;최민기;남수현
    • 대한한방내과학회지
    • /
    • 제37권5호
    • /
    • pp.741-749
    • /
    • 2016
  • Objective: To evaluate the effect of Sukjihwangbogan-tang-gagam (熟地黃補肝湯加減) in a patient with delayed vascular chorea. Methods: A vascular chorea patient was treated with acupuncture, moxibustion, and herbal medicine (Sukjihwangbogan-tang-gagam). Results: Improvements in the Unified Huntington’s Disease Rating Scale (UHDRS), UFMG Sydenham’s Chorea Rating Scale (USCRS) (especially the scale of Activity of Daily Living (ADL)) (dysarthria 2→0, tongue protrusion 3→1, chorea 3→1, handwriting 3→1), and a Visual Analogue Scale (VAS) (8→2) were observed after the Sukjihwangbogan-tang-gagam treatment. Conclusions: Sukjihwangbogan-tang-gagam may be an effective treatment for patients with delayed vascular chorea.

Functional Expression of Saccharomyces cerevisiae NADH-quinone Oxidoreductase (NDI1) Gene in the AML12 Mouse Liver Hepatocytes for the Applying Embryonic Stem Cell

  • Seo, Byoung-Boo;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • 제35권4호
    • /
    • pp.427-434
    • /
    • 2011
  • Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber's hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.

노년기 정신장애의 전기경련치료 (Electroconvulsive Therapy for Psychiatric Disorders in Elderly Adults)

  • 주은정;김희철;강웅구;이남영;박승현;김정민;김용식;정인원
    • 생물정신의학
    • /
    • 제27권2호
    • /
    • pp.42-57
    • /
    • 2020
  • Electroconvulsive therapy (ECT) is indicated for various mental disorders (e.g., major depressive disorder, schizophrenia, and bipolar disorder) and the behavioral and psychological symptoms of dementia in elderly patients. Furthermore, ECT is a useful first-line treatment in emergency and crisis situations such as suicide risk, violent behavior, catatonia, and food refusal, which are more frequent in elderly patients. ECT is also effective in the treatment of the motor symptoms of neurological disorders, such as Parkinson's disease and Huntington's disease. Due to the high risk of various physical diseases, the comorbid physical conditions of elderly patients should be individually controlled to optimize ECT treatment. Compared to young adults, in elderly patients the seizure threshold is higher, the seizure duration is shorter, and the anesthetic dose is lower. On the contrary, the response rate in the elderly is both faster and higher. Considering potential cognitive decline and the prevention of further deterioration of cognitive function in elderly patients, in the absence of significant comorbidities, twice weekly sessions and right unilateral electrode placement with a lower seizure threshold and less cognitive effect are preferred to bilateral electrode placement, which has a high risk of adverse cognitive effects. After an acute course of ECT, continuation and maintenance of ECT, combined with prescription of therapeutic drugs, may prevent possible relapse or recurrence of mental disorders. In conclusion, ECT can be used to treat mental disorders in elderly adults, with safety and effectiveness comparable to that in young adults.