• 제목/요약/키워드: human-to-human (H2H)

검색결과 3,601건 처리시간 0.037초

신종플루 바이러스를 통한 인플루엔자 바이러스의 해석 및 전망 (Interpretation and Prospection of Influenza Virus through Swine-origin Influenza Virus)

  • 장경수
    • 대한임상검사과학회지
    • /
    • 제42권1호
    • /
    • pp.1-15
    • /
    • 2010
  • Swine influenza virus (SIV) or swine-origin influenza virus (S-OIV) is endemic in swine, and classified into influenza A and influenza C but not influenza B. Swine influenza A includes H1N1, H1N2, H3N1, H3N2 and H2N3 subtypes. Infection of SIV occurs in only swine and that of S-OIV is rare in human. What human can be infected with S-OIV is called as zoonotic swine flu. Pandemic 2009 swine influenza H1N1 virus (2009 H1N1) was emerged in Mexico, America and Canada and spread worldwide. The triple-reassortant H1N1 resulting from antigenic drift was contained with HA, NA and PB1 of human or swine influenza virus, PB2 and PA polymerase of avian influenza virus, and M, NP and NS of swine influenza virus, The 2009 H1N1 enables to transmit to human and swine. The symptoms and signs in human infected with 2009 H1N1 virus are fever, cough and sore throat, pneumonia as well as diarrhea and vomiting. Co-infection with other viruses and bacteria such as Streptococcus pneumoniae can occur high mortality in high-risk population. 2009 H1N1 virus was easily differentiated from seasonal flu by real time RT-PCR which contributed rapid and confirmed diagnosis. The 2009 H1N1 virus was treated with NA inhibitors such as oseltamivir (Tamiflu) and zanamivir (Relenza) but not with adamantanes such as amantadine and rimantadine. Evolution of influenza virus has continued in various hosts. Development of a more effective vaccine against influenza prototypes is needed to protect new influenza infection such as H5 and H7 subtypes to infect to multi-organ and cause high pathogenicity.

  • PDF

A New Member of Human TSA/AhpC as Thioredoxin-dependent Thiol Peroxidase

  • Jeong, Woo-Jin;Cha, Mee-Kyung;Kim, Il-Han
    • BMB Reports
    • /
    • 제33권3호
    • /
    • pp.234-241
    • /
    • 2000
  • A new type of the human TSA homologous gene was cloned from a HeLa cell cDNA and characterized. The gene product consists of 161 amino acids with a molecular mass of 16,900. The TSA homologous protein, as a new 6th member of the human TSA (hTSA VI), exerted a thioldependent peroxidase activity with the use of thioredoxin system as a physiological electron donor. The values of $V_{max}/K_m$ of hTSA VI for $H_2O_2$ and t-butyl hydroperoxide (t-BOOH) were calculated as $5.53{\times}10^{-2}$ and $3.70{\times}10^{-2}$, respectively. This implies that hTSA VI is a peroxidase, which reduces $H_2O_2$ and t-BOOH. The mutation of $Cys^{47}$ to serine resulted in a complete loss of the peroxidase activity. This suggests that $Cys^{47}$ acts as a primary site of catalysis. The analysis of the tryptic digest derived from hTSA VI revealed that the $Cys^{47}$ exists as a free thiol form. Taken together, these results suggest that the TSA homologous protein is a new type of the human family, which exerts thioredoxin-linked peroxidase activity toward $H_2O_2$ and alkyl hydroperoxide.

  • PDF

Interaction Characteristics of Nucleoside Analogues with Human Organic Anion Transporter 1 and 3

  • Choi, Jun-Shik;Cheon, Eun-Pa;Han, Hyo-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권4호
    • /
    • pp.283-286
    • /
    • 2006
  • The present study aimed to investigate the interaction of nucleoside analogs with human organic anion transporter 1 and 3(hOAT1 and hOAT3) that play a primary role in the tubular uptake of endogenous and exogenous organic anions in the kidney. The interactions of ddC, ara-C, ara-A and ara-U with hOAT1 and hOAT3 were examined using MDCK cells stably overexpressing hOAT1 or hOAT3. Among the tested drugs, ddC showed the highest affinity to hOAT1 with $IC_{50}$ values of 5.2 mM, while ara-A, ara-C and ara-U weakly inhibited the cellular uptake of $[^3H]-PAH$ in MDCK-hOAT1 cells at 1 mM. In contrast, all the tested drugs did not have any inhibition effect on the cellular uptake of $[^3H]-estrone$ sulfate in MDCK-hOAT3 cells over the drug concentration of 0.01-2 mM, implying that they might not interact with hOAT3. Taken all together, the present study suggests that hOAT1 could weakly interact with nucleoside analogues such as ddC, ara-C, ara-A and ara-U but the interaction with hOAT3 during the urinary excretion of these nucleoside analogues may be negligible in the kidney.

Evaluation of Three Pork Quality Prediction Tools Across a 48 Hours Postmortem Period

  • Morel, P.C.H.;Camden, B.J.;Purchas, R.W.;Janz, J.A.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권2호
    • /
    • pp.266-272
    • /
    • 2006
  • Numerous reports have evaluated the predictive ability of carcass probes for meat quality using measurements taken early postmortem or near 24 h. The intervening time period, however, has been largely ignored. In this study, the capacity of three probes [pH, electrical conductivity (EC), and grading probe light reflectance (GP)] to predict pork longissimus muscle quality (drip and cooking losses, Warner-Bratzler shear, $L^*$, n = 30) was evaluated at 45 min, 90 min, 3, 6, 12, 24, and 48 h postmortem. The strongest relationships were observed between cooking loss and 6 h EC and GP ($R^2$ = 0.66, 0.72), and $L^*$ and GP ($R^2$ = 0.57-0.66, 12-48 h). pH was most valuable early postmortem ($R^2$ = 0.63, 90 min with cooking loss). GP at 6 h most effectively ($R^2$ = 0.84) predicted a two factor (cooking loss+$L^*$) meat quality index. Results emphasize the predictive value of measures taken between 3 and 12 h postmortem.

Anatomical Study on the Heart Meridian Muscle in Human

  • Park Kyoung-Sik
    • 대한한의학회지
    • /
    • 제26권1호
    • /
    • pp.11-17
    • /
    • 2005
  • This study was carried out to identify the components of the human heart meridian muscle, the regional muscle group being divided into outer, middle, and inner layers. The inner parts of the body surface were opened widely to demonstrate muscles, nerves, blood vessels and to expose the inner structure of the heart meridian muscle in the order of layers. We obtained the following results; $\cdot$ The heart meridian muscle is composed of muscles, nerves and blood vessels. $\cdot$ In human anatomy, the difference between terms is present (that is, between nerves or blood vessels which control the meridian muscle and those which pass near by). $\cdot$ The inner composition of the heart meridian muscle in the human arm is as follows: 1) Muscle H-l: latissimus dorsi muscle tendon, teres major muscle, coracobrachialis muscle H-2: biceps brachialis muscle, triceps brachialis muscle, brachialis muscle H-3: pronator teres muscle and brachialis muscle H-4: palmar carpal ligament and flexor ulnaris tendon H-5: palmar carpal ligament & flexor retinaculum, tissue between flexor carpi ulnaris tendon and flexor digitorum superficialis tendon, flexor digitorum profundus tendon H-6: palmar carpal ligament & flexor retinaculum, flexor carpi ulnaris tendon H-7: palmar carpal ligament & flexor retinaculum, tissue between flexor carpi ulnaris tendon and flexor digitorum superficial is tendon, flexor digitorum profundus tendon H-8: palmar aponeurosis, 4th lumbrical muscle, dorsal & palmar interrosseous muscle H-9: dorsal fascia, radiad of extensor digiti minimi tendon & extensor digitorum tendon 2) Blood vessel H-1: axillary artery, posterior circumflex humeral artery H-2: basilic vein, brachial artery H-3: basilic vein, inferior ulnar collateral artery, brachial artery H-4: ulnar artery H-5: ulnar artery H-6: ulnar artery H-7: ulnar artery H-8: palmar digital artery H-9: dorsal digital vein, the dorsal branch of palmar digital artery 3) Nerve H-1: medial antebrachial cutaneous nerve, median n., ulnar n., radial n., musculocutaneous n., axillary nerve H-2: median nerve, ulnar n., medial antebrachial cutaneous n., the branch of muscular cutaneous nerve H-3: median nerve, medial antebrachial cutaneous nerve H-4: medial antebrachial cutaneous nerve, ulnar nerve H-5: ulnar nerve H-6: ulnar nerve H-7: ulnar nerve H-8: superficial branch of ulnar nerve H-9: dorsal digital branch of ulnar nerve.

  • PDF

α1,3-Galactosyltransferase 유전자 위치에 사람 Decay Accelerating Factor와 α1,2-Fucosyltransferase 유전자가 Knock-in된 미니돼지 체세포 (Knock-in Somatic Cells of Human Decay Accelerating Factor and α1,2-Fucosyltransferase Gene on the α1,3-Galactosyltransferase Gene Locus of Miniature Pig)

  • 김지우;강만종
    • Reproductive and Developmental Biology
    • /
    • 제39권3호
    • /
    • pp.59-67
    • /
    • 2015
  • 동물의 장기를 인간에게 이식하게 되면 초급성거부반응(Hyperacute rejection, HAR)이 일어난다. 초급성거부반응은 면역계의 구성요소 중 보체(complement)에 의해 일어나는 거부반응으로 돼지의 혈관세포 표면에 있는 $Gal{\alpha}$(1,3)Gal 당분자에 인간의 항체가 즉각 반응하기 때문에 일어나며, ${\alpha}1,3$-galactosyltransferase(${\alpha}1,3$-GT) 유전자는 돼지 혈관세포 표면의 $Gal{\alpha}$(1,3)Gal 당분자 생성에 관여한다. 따라서 인간에게 돼지의 장기를 이식하기 위해서는 ${\alpha}1,3$-galactosyltransferase 유전자를 제거하는 것이 필요한 것으로 알려져 있다. 본 연구실의 이전 연구에서, 시카고 미니돼지 귀체세포에서 상동 재조합(Homologous recombination)을 통해 ${\alpha}1,3$-galactosyltransferase 유전자가 제거된 체세포를 개발한 바 있으며, 이 체세포를 통하여 ${\alpha}1,3$-GT 유전자가 제거된 돼지도 생산된 바 있다. 본 연구에서는, human serum 처리 시 돼지 세포를 보호해 준다고 보고되고 있는 human complement regulator인 human Decay-accelerating factor(hDAF)와 human ${\alpha}1,2$-fucosyltransferase(hHT)유전자를 ${\alpha}1,3$-GT 유전자 위치에 gene targeting하여 동시에 hDAF와 hHT가 발현하는 체세포를 개발하였다. Knock-in vector는 hDAF와 hHT 두 유전자가 발현할 수 있도록 IRES로 연결하였으며, ${\alpha}1,3$-GT 유전자의 start codon을 이용하여 발현할 수 있도록 구축하였다. 구축한 vector는 electroporation을 통해 미니 돼지 체세포에 도입하였으며, PCR 결과, ${\alpha}1,3$-GT 유전자 위치에서 상동 재조합이 일어났음을 확인하였다. Positive-negative 선별 방법을 통해 얻은 gene targeting 된 체세포는 RT-PCR에 의해 hDAF와 hHT 유전자의 발현이 확인되었으며, 대조군(NIH minipig)에 비해 ${\alpha}1,3$-GT 유전자의 발현이 감소하였다. 또한 이들 세포에 100% human complement serum을 처리하였을 때 knock-in 세포가 대조군에 비해 30% 정도 더 높은 생존율을 보였다. 따라서 개발된 체세포는 이종간 장기이식을 위한 돼지 생산과 함께 이를 이용한 이종간의 장기 이식 시 초급성 거부반응을 억제하는 데 사용될 수 있을 것으로 생각된다.

성숙배양액에 첨가하는 인간체액 (Human Body Fluids) 및 성선자극호르몬이 생쥐 미성숙난자의 핵성숙과 수정능력에 미치는 영향 (Influences of Human Body Fluids and Gonadotropins Supplemented in the Maturation Medium on the Nuclear Maturation and Fertilizability of Mouse Immature Oocytes)

  • 박기상;손원영;김진희;이경아;한세열;고정재;차광열
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제21권2호
    • /
    • pp.183-190
    • /
    • 1994
  • Purpose of the present study was to find the optimal culture conditions for the maturation and fertilization of immature oocytes by the use human body fluids and gonadotropins (Gn) in the mouse model. Cumulus-enclosed mouse immature oocytes were incubated in the medium containing various human body fluids with or without Gn in vitro, and examined to confirm nuclear maturation (NM) and fertilization. Female ICR mice were stimulated with 7.5 IU pregnant mares' serum gonadotropin (PMSG). Cumulus-enclosed immature oocytes were isolated at 48-52 hr post PMSG injection and cultured in TCM 199 supplemented with various concentrations (20, 50, and 70%) of human body fluids such as fetal cord serum (hCS), follicular fluid (hFF), peritoneal fluid (hPF) and amniotic fluid (hAF) in the presence or absence of 10 IU/ml PMSG and 10 IU/ml human chorionic gonadotropin (hCG) for 18 hr. Fetal calf serum (FCS) was used as a control for the supplements. Matured oocytes were fertilized with sperm collected from the epididymis of male mice. Fertilization was conducted in T6 medium containing 15 mgl ml bovine serum albumin, and confirmed at 6 hr post-insemination. Evaluation of nucler maturation and fertilization was carried out by rapid staining using fuchin. There was no significant difference between the effects of human body fluids and FCS supplements on nuclear maturation of cumulus enclosed mouse immature oocytes. When maturation medium was supplemented with 20% hPF or 20% hAF, fertilization rates were significantly (P<0.01) lower than that of 20% FCS, hCS and hFF groups. However, higher concentrations of body fluids during IVM were not more beneficial on fertilizability of oocytes. The addition of Gn significantly increased the fertilization rates in hPF and hAF groups (hPF without Gn; 51.5%, compared with 85.1% for addition of Gn, and hAF without Gn; 30.1% compared with 85.8% for addition of Gn) at 20% concentration. These results suggest that human body fluids at 20% concentration and gonadotropins can be used as supplements for the maturation of mouse immature oocytes in vitro. When gonadotropins supplemented with the human body fluids in the maturation medium, fertilizability of mouse immature oocytes was increased in hPF and hAF groups. These results can be applied to maturation of human immature oocytes in vitro.

  • PDF

신경세포에서의 Human Cytomegalovirus 증식과 이에 따른 세포내 유리칼슘 농도 변화 (Human Cytomegalovirus Replication and $Ca^{2+}$ Response in Human Cell Lines of Neuronal Origin)

  • 강경희;이찬희
    • 대한바이러스학회지
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 1996
  • Human cytomegalovirus (HCMV) replication and $Ca^{2+}$ response in human cell lines of neuronal origin were investigated. SK-N-SH (neuroblastoma cells) and A172 cells (glioblastoma cells) were used. SK-N-SH cells were permissive for HCMV multiplication with a delay of one day compared to virus multiplication in human embryo lung (HEL) cells. The delay of HCMV multiplication in SK-N-SH cells appeared to be correlated with a delay in the $Ca^{2+}$ response. The cytoplasmic free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) began to increase at 12 h p.i. in HCMV-infected SK-N-SH cells, while $[Ca^{2+}]_i$ increase in HCMV-infected HEL cells was observed as early as 3 h p.i. On the whole, the level of the increase in $[Ca^{2+}]_i$ in SK-N-SH cells was about 30% of that in HEL cells. On the other hand, in A172 cells infected with HCMV, neither production of infectious virus nor detectable increase in $[Ca^{2+}]_i$ was observed. Treatment with TPA of HCMV-infected SK-N-SH cells resulted in $[Ca^{2+}]_i$ increase at 6 h p.i. The stimulatory effect of TPA on HCMV- induced $[Ca^{2+}]_i$ increase continued until 12 h p.i., but TPA failed to stimulate the $Ca^{2+}$ response in SK-N-SH cells at 24 h p.i., suggesting that the effect of TPA had disappeared in SK-N-SH cells at that time point. In conclusion, SK-N-SH cells are permissive for HCMV replication and the delay in $Ca^{2+}$ response may be a consequence of the lower responsiveness of SK-N-SH cells than HEL cells to HCMV infection.

  • PDF

배양액 내 인간 난포액 및 성선자극호르몬 첨가가 인간 미성숙 난자의 체외성숙, 수정 및 체외 배발달에 미치는 영향 (Influence of Human Follicular Fluid and Gonadotropins in the Culture Medium on the In Vitro Maturation, Fertilization and Development of Human Immature Oocytes)

  • 김은국;김동원;정병준
    • 한국수정란이식학회지
    • /
    • 제24권3호
    • /
    • pp.145-150
    • /
    • 2009
  • This study was conducted to examine the effects of human follicular fluid and gonadotropin (FSH+HCG+rhEGF) on in vitro maturation, fertilization and development of human immature oocytes. Cumulus-oocyte complexes (COCs) were collected following for in vitro fertilization and embryo transfer (IVF-ET) cycles of the patients. At the time of oocytes collection, oocytes were classified into MII, MI and GV in accordance with their appearance (MII: Fully mature oocyte at metaphase II of meiosis; MI: Nearly mature oocytes at metaphase I of meiosis; GV: Immature oocytes at prophase I of meiosis). After controlled ovarian stimulation using gonadotropin(FSH) and human chorionic gonadotropin (HCG) in 70 ICSI cycles, 158 MI to MII matured oocytes were intracytoplasmic sperm injection (ICSI) ${\sim}4$ h after in vitro culture and 553 MII oocytes were ICSI after denudation. The aspirated MI and GV oocytes were cultured in culture medium containing 10% (v/v) serum protein substitute (SPS), 10% (v/v) human follicular fluid (hFF) and 10% (v/v) serum protein substitute (SPS)+1 IU/ml FSH+10 IU/ml HCG+10 ng/ml recombinant human epidermal growth factor (rhEGF). The maturation rate of immature oocytes was similar among the three group. When maturation medium was supplemented with 10% SPS, 10% hFF or gonadotropins, the fertilization rate of in vitro matured oocytes was higher in 10% SPS (80.0%), but there was no statistical significance (78.2%; hFF, 76.9%; gonadotropin, p>0.05). The development rate of human embryos developed to $6{\sim}8$ cells were not significant difference in the medium containing SPS, hFF and gonadotropins (65.6%, 65.9% and 66.7%). The results of these study suggest that human follicular fluid and gonadotropins supplemented in the culture medium was not effected on the in vitro maturation, fertilization and development of human immature oocytes.

Valproic Acid Induces Transcriptional Activation of Human GD3 Synthase (hST8Sia I) in SK-N-BE(2)-C Human Neuroblastoma Cells

  • Kwon, Haw-Young;Dae, Hyun-Mi;Song, Na-Ri;Kim, Kyoung-Sook;Kim, Cheorl-Ho;Lee, Young-Choon
    • Molecules and Cells
    • /
    • 제27권1호
    • /
    • pp.113-118
    • /
    • 2009
  • In this study, we have shown the transcriptional regulation of the human GD3 synthase (hST8Sia I) induced by valproic acid (VPA) in human neuroblastoma SK-N-BE(2)-C cells. To elucidate the mechanism underlying the regulation of hST8Sia I gene expression in VPA-stimulated SK-N-BE(2)-C cells, we characterized the promoter region of the hST8Sia I gene. Functional analysis of the 5'-flanking region of the hST8Sia I gene by the transient expression method showed that the -1146 to -646 region, which contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1 and NF-${\kappa}B$, functions as the VPA-inducible promoter of hST8Sia I in SK-N-BE(2)-C cells. Site-directed mutagenesis and electrophoretic mobility shift assay indicated that the NF-${\kappa}B$ binding site at -731 to -722 was crucial for the VPA-induced expression of hST8Sia I in SK-N-BE(2)-C cells. In addition, the transcriptional activity of hST8Sia I induced by VPA in SK-N-BE(2)-C cells was strongly inhibited by SP600125, which is a c-Jun N-terminal kinase (JNK) inhibitor, and $G{\ddot{O}}6976$, which is a protein kinase C (PKC) inhibitor, as determined by RT-PCR (reverse transcription-polymerase chain reaction) and luciferase assays. These results suggest that VPA markedly modulated transcriptional regulation of hST8Sia I gene expression through PKC/JNK signal pathways in SK-N-BE(2)-C cells.