• Title/Summary/Keyword: human walking

Search Result 487, Processing Time 0.024 seconds

Seafarers Walking on an Unstable Platform: Comparisons of Time and Frequency Domain Analyses for Gait Event Detection

  • Youn, Ik-Hyun;Choi, Jungyeon;Youn, Jong-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.244-249
    • /
    • 2017
  • Wearable sensor-based gait analysis has been widely conducted to analyze various aspects of human ambulation abilities under the free-living condition. However, there have been few research efforts on using wearable sensors to analyze human walking on an unstable surface such as on a ship during a sea voyage. Since the motion of a ship on the unstable sea surface imposes significant differences in walking strategies, investigation is suggested to find better performing wearable sensor-based gait analysis algorithms on this unstable environment. This study aimed to compare two representative gait event algorithms including time domain and frequency domain analyses for detecting heel strike on an unstable platform. As results, although two methods did not miss any heel strike, the frequency domain analysis method perform better when comparing heel strike timing. The finding suggests that the frequency analysis is recommended to efficiently detect gait event in the unstable walking environment.

Experimental study on vibration serviceability of steel-concrete composite floor

  • Cao, Liang;Liu, Jiepeng;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.711-722
    • /
    • 2020
  • In this study, on-site testing was carried out to investigate the vibration serviceability of a composite steel-bar truss slab with steel girder system. Impulse excitations (heel-drop and jumping) and steady-state motion (walking and running) were performed to capture the primary vibration parameters (natural frequency and damping ratio) and distribution of peak acceleration. The composite floor possesses low frequency (<8.3Hz) and damping ratio (<2.47%). Based on experimental, theoretical, and numerical analyses on fundamental natural frequency, the boundary condition of SCSS (i.e., three edges simply supported and one edge clamped) is deemed more comparable substitutive for the investigated composite floor. Walking and running excitations by one person (single excitation) were considered to evaluate the vibration serviceability of the composite floor. The measured acceleration results show a satisfactory vibration perceptibility. For design convenience and safety, a crest factor βrp describing the ratio of peak acceleration to root-mean-square acceleration induced from the walking and running excitations is proposed. The comparisons of the modal parameters determined by walking and running tests reveal the interaction effect between the human excitation and the composite floor.

A Study on the Environment Recognition System of Biped Robot for Stable Walking (안정적 보행을 위한 이족 로봇의 환경 인식 시스템 연구)

  • Song, Hee-Jun;Lee, Seon-Gu;Kang, Tae-Gu;Kim, Dong-Won;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1977-1978
    • /
    • 2006
  • This paper discusses the method of vision based sensor fusion system for biped robot walking. Most researches on biped walking robot have mostly focused on walking algorithm itself. However, developing vision systems for biped walking robot is an important and urgent issue since biped walking robots are ultimately developed not only for researches but to be utilized in real life. In the research, systems for environment recognition and tele-operation have been developed for task assignment and execution of biped robot as well as for human robot interaction (HRI) system. For carrying out certain tasks, an object tracking system using modified optical flow algorithm and obstacle recognition system using enhanced template matching and hierarchical support vector machine algorithm by wireless vision camera are implemented with sensor fusion system using other sensors installed in a biped walking robot. Also systems for robot manipulating and communication with user have been developed for robot.

  • PDF

Gait Implementation of a Biped Robot with Smooth Walking Pattern (유연한 보행 형태를 갖는 이족보행로봇의 걸음새 구현)

  • No, Gyeong-Gon;Gong, Jeong-Sik;Kim, Jin-Geol;Kim, Gi-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.43-50
    • /
    • 2002
  • This paper presents the new gait implementation of a biped robot with smooth walking using 3-dimensional continuous trunk motion and kick action of ankle joints. Trajectory generation ova trunk is performed not on a unit gait but on a whole walking interval. In applying kick action such as heel-touch or toe-off, varying coordinate system was employed for the simplification of the kinematic analysis. Desired ZMP (zero moment point) is also changed to implement the efficient kick action. As a result, balancing motion of the proposed gait was much more decreased than that of conventional one. Moreover, robot\\`s walking behavior is very smooth, natural and similar to the pace of a human. The walking experiment system is composed of eight AC servo motors and a DSP controller. The walking simulation and the experimental results are shown using the proposed new walking algorithm.

A Study of the Characteristics and Psychology of Women with Strollers by a Pedestrian Environment in a Housing Area (주거지 보행환경과 유모차 동반 여성보행자의 외출특성 및 보행심리와의 관계)

  • Kim, Myo-Jung
    • Journal of the Korean housing association
    • /
    • v.28 no.1
    • /
    • pp.45-54
    • /
    • 2017
  • A pedestrian environment provides improved walking conditions and facilities for most pedestrians. However, the walking conditions for women with strollers are poor. The purpose of this study was to provide information on the walking environment planning for women with strollers in an urban housing area through analyse of walking characteristics, patterns of going out, and the psychology of them. This study surveyed 208 women who pushed a baby n a stroller in Gyeongsan. The analysis consisted of calculation of the frequencies, the mean, t-test, and ${\chi}^2$ test. The survey results revealed that, first, the women had their own favorite places in the housing area, and usually went out during the afternoon as various aims. When they went out, they felt stress both psychologically and physically, and they thought that they were weak at walking. Second, the safety and the convenience factors of walking environment were important conditions that make the women to go out often. Third, the environment that have not the accessibility, the amenity, and the diversity also restricted the women from going out with the stroller. As a result, they did mot use the stroller and tended to use their cars to go out. However, when the diversity of the environment is added to walking environment, women invreased their social interactions.

A Study on the Obstacle-Avoidance Walking Algorithm of a Biped Robot (이족보행로봇의 장애물극복 보행알고리즘에 관한 연구)

  • Kim, Yong-Tae;Lee, Eun-Seon;Lee, He-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.686-691
    • /
    • 2003
  • In the paper, an intelligent biped walking robot that can overcome the obstacle is developed. Walking algorithms are designed based on the analysis of the human's manner of walking. Infrared sensors are used to detect the obstacles in the working environment and the remote controller of the biped robot use a RF module. The experiment results show that the developed biped walking robot can perform the stable static walking, attention walking, rotation and side stepping to avoid the obstacle, and hurdling the obstacle using the distance correction algorithm that is designed based on the distance information between the biped robot and the obstacle.

A Gait Implementation of a Biped Robot Based on Intelligent Algorithm (지능 알고리즘 기반의 이족 보행로봇의 보행 구현)

  • Kang Chan-Soo;Kim Jin-Geol;Noh Kyung-Kon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1210-1216
    • /
    • 2004
  • This paper deals with a human-like gait generation of a biped robot with a balancing weight of an inverted pendulum type by using genetic algorithm. The ZMP (Zero Moment Point) is the most important index in a biped robot's dynamic walking stability. To perform a stable walking of a biped robot, a balancing motion is required according to legs' trajectories and a desired ZMP trajectory. A dynamic equation of the balancing motion is nonlinear due to an inverted pendulum type's balancing weight. To solve the nonlinear equation by the FDM (Finite Difference Method), a linearized model of equation is proposed. And GA (Genetic Algorithm) is applied to optimize a human-like balancing motion of a biped robot. By genetic algorithm, the index of the balancing motion is efficiently optimized, and a dynamic walking stability is verified by the ZMP verification equation. These balancing motion are simulated and experimented with a real biped robot IWR-IV. This human-like gait generation will be applied to a humanoid robot, at future work.

Characteristics of Transmission of Floor Vibration and Floor Impact Noise Due to Human Activities (거주자의 거동으로 발생하는 바닥진동의 층간 전달 및 바닥충격음의 음압레벨 특성 평가)

  • Lee, MinJung;Choi, HyunKi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.5-13
    • /
    • 2017
  • Noise complaints among neighbors in apartment building are mainly caused by floor impact noise that is structure born noise due to occupant induced floor vibration. To control this noise problems many researchers have investigated floor systems and finishing materials. Light-weight impact noise affects by finishing materials, but heavy-weight impact noise induced by heel impacts during normal walking or jumping of children is concerned with structural system and floor vibration. To figure out the characteristics of floor impact noise and transmission of floor vibration due to human activities, vibration tests were conducted in apartment buildings. Impact hammer, heel drop and walking activities were loaded at center of upstairs living room, and accelerations of slabs for both upstairs and downstairs and sound pressure levels for downstairs were measured. The acceleration ratio of transmitted floor vibration to downstairs and human induced vibration in upstairs was between 0.5 and 1.0 according to slab size, wall, and load type. And floor impact noise occurred in the range of natural frequency of slab.

Walking Number Detection Algorithm using a 3-Axial Accelerometer Sensor and Activity Monitoring (3축 가속도 센서를 이용한 보행 횟수 검출 알고리즘과 활동 모니터링)

  • Yoo, Hyang-Mi;Suh, Jae-Won;Cha, Eun-Jong;Bae, Hyeon-Deok
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.8
    • /
    • pp.253-260
    • /
    • 2008
  • The research for a 3-axial accelerometer sensor has increased dramatically in the fields of cellular phone, PDA, etc. In this paper, we develop a human walking detection algorithm using 3-axial accelerometer sensor and a user interface system to show the activity expenditure in real-time. To measure a walking number more correctly in a variety of walking activities including walking, walking in place, running, slow walking, we propose a new walking number detection algorithm using adaptive threshold value. In addition, we calculate the activity expenditure base on counted walking number and display calculated activity expenditure on UI in real-time. From the experimental results, we could obtain that the detection rate of proposal algorithm is higher than that of existing algorithm using a fixed threshold value about $5{\sim}10%$. Especially, it could be found out high detection rate in walking in place.

A Research on Design Direction for the Smart Walking Wear to Support Walking Exercise for the Baby Boomer Group (베이비부머 집단을 위한 보행 운동용 스마트 워킹웨어의 디자인 방향 연구)

  • Ban, Hyunsung;Hwang, Sujung;Kim, Sinhye;Lee, Joohyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.129-140
    • /
    • 2018
  • This study aimed to analyze consumers' acceptance of sports applications and smart sportswear to better design technology-enhanced walking exercise wear for the Baby Boomer generation based on their cohort characteristics. A questionnaire with items related to acceptance of existing smart sportswear design, functionality, and usability as well as existing sports application design, functionality, and usability was sent to consumers aged 50-65. Of 163 questionnaires distributed, 150 were used for analysis. The results showed that middle-aged consumers were aware of smart sportswear's functional stability, but were concerned about care, durability, and convenience. Middle-aged consumers were also aware of sports applications as educational functions for obtaining new information. Additionally, they found sports applications to have lower perceived convenience and accessibility relative to the young generation, highlighting the need for simple instructions and explanations for sports application planning. Based on these results, we propose "Everyday design for general sportswear," "Functions based on consumer's preference," "Enhanced design for durability and management convenience" for designing and planning walking exercise wear for middle-aged consumers, and "Convenient application organization" and "Educational exercise contents" for application planning for walking exercises.