• Title/Summary/Keyword: human threat

Search Result 274, Processing Time 0.024 seconds

Exploration of Metallic Contamination in Fish Species of the Polluted Rivers in Bangladesh

  • Rahman, Mokhlesur;Jiku, Abu Sayem;Alim, Abdul;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • An attempt was made to assess metal ionic toxicity levels of different fishes in the polluted rivers viz., Buriganga and Turag. Fish samples collected from two polluted rivers were analyzed for the levels of metals such as Cd, Cr, Cu, Mn, Pb, and Zn in order to elucidate the status of these contaminants in fish meant for human consumption. The detected concentrations of Cr, Cu, Mn, and Zn ions in fish species collected from the polluted rivers were below the toxic levels and did not appear to pose a threat. Among the analyzed metals, Cd and Pb ions were detected above the permissible levels in liver and muscle tissues of stinging catfish (Heteropneustesfossilis), spotted snakehead (Channapunctata) and wallago (Wallagoattu) collected from the polluted rivers causing toxicity for human consumption. Stinging catfish (Heteropneustesfossilis) was the species found to highly bioaccumulate these metals. Fish species bioconcentrated appreciable amounts of Cd and Pb as toxic metals in the liver as compared to the muscle. Levels of these toxic metals varied depending on different tissues in fish species.

Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants

  • Vu, Nguyen Trung;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.204-217
    • /
    • 2020
  • In nature, plants are always under the threat of pests and diseases. Pathogenic bacteria are one of the major pathogen types to cause diseases in diverse plants, resulting in negative effects on plant growth and crop yield. Chemical bactericides and antibiotics have been used as major approaches for controlling bacterial plant diseases in the field or greenhouse. However, the appearance of resistant bacteria to common antibiotics and bactericides as well as their potential negative effects on environment and human health demands bacteriologists to develop alternative control agents. Bacteriophages, the viruses that can infect and kill only target bacteria very specifically, have been demonstrated as potential agents, which may have no negative effects on environment and human health. Many bacteriophages have been isolated against diverse plant-pathogenic bacteria, and many studies have shown to efficiently manage the disease development in both controlled and open conditions such as greenhouse and field. Moreover, the specificity of bacteriophages to certain bacterial species has been applied to develop detection tools for the diagnosis of plant-pathogenic bacteria. In this paper, we summarize the promising results from greenhouse or field experiments with bacteriophages to manage diseases caused by plant-pathogenic bacteria. In addition, we summarize the usage of bacteriophages for the specific detection of plant-pathogenic bacteria.

Characterization of bat coronaviruses: a latent global threat

  • Fang, Manxin;Hu, Wei;Liu, Ben
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.72.1-72.15
    • /
    • 2021
  • It has been speculated that bats serve as reservoirs of a huge variety of emerging coronaviruses (CoVs) that have been responsible for severe havoc in human health systems as well as negatively affecting human economic and social systems. A prime example is the currently active severe acute respiratory syndrome (SARS)-CoV2, which presumably originated from bats, demonstrating that the risk of a new outbreak of bat coronavirus is always latent. Therefore, an in-depth investigation to better comprehend bat CoVs has become an important issue within the international community, a group that aims to attenuate the consequences of future outbreaks. In this review, we present a concise introduction to CoVs found in bats and discuss their distribution in Southeast Asia. We also discuss the unique adaptation features in bats that confer the ability to be a potential coronavirus reservoir. In addition, we review the bat coronavirus-linked diseases that have emerged in the last two decades. Finally, we propose key factors helpful in the prediction of a novel coronavirus outbreak and present the most recent methods used to forecast an evolving outbreak.

Evaluation of the anti-Toxoplasma gondii Activity of Hederagenin in vitro and in vivo

  • Zhang, Run-Hui;Jin, Runhao;Deng, Hao;Shen, Qing-Kun;Quan, Zhe-Shan;Jin, Chun-Mei
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.3
    • /
    • pp.297-301
    • /
    • 2021
  • Toxoplasma gondii infection is widespread worldwide, not only posing a serious threat to human food safety and animal husbandry, but also endangering human health. The selectivity index was employed to measure anti-T. gondii activity. Hederagenin (HE) exhibited potent anti-T. gondii activity and low cytotoxicity. For this reason, HE was selected for in vivo experiments. HE showed 64.8%±13.1% inhibition for peritoneal tachyzoites in mice, higher than spiramycin 56.8%±6.0%. Biochemical parameters such as alanine aminotransferase, aspartate aminotransferase, glutathione, and malondialdehyde, illustrated that HE was a good inhibitor of T. gondii in vivo. This compound was also effective in relieving T. gondii-induced liver damage. Collectively, it was demonstrated that HE had potential as an anti-T. gondii agent.

The Distribution of Technological Innovation & Environmental Policy against COVID-19: Perspectives and Challenges

  • CHOI, Choongik
    • Journal of Distribution Science
    • /
    • v.20 no.8
    • /
    • pp.115-121
    • /
    • 2022
  • Purpose: This article aims to explore the distribution of technological innovation and environmental policy challenges to respond to COVID-19. The study also attempts to tackle a paradigm shift in science and technology policies against the pandemic and a desirable direction for environmental policies. The COVID-19 pandemic has been the one that rapidly changed global people's lifestyle. For the spread of a terrible infectious disease could not be avoided, regardless of a highly industrialized society. Research design, data and methodology: This study basically employs a qualitative approach as a methodology. This study is based on the fact that environmental pollution, various natural disasters continuously occur, and there are many unforeseeable parts, despite remarkable development of scientific technology, and that the circumstances are becoming more complex. Results: This study noted that scientific technology civilization formed due to industrial revolutions can deteriorate environment and increase environmental threat factors. As an alternative to this, this study investigates alternative discussions on how the 4th Industrial Revolution can help scientific technology and human environment to harmoniously coexist and develop. Conclusions: It implies that this study focuses on the possibility of overcoming this crisis through science and technology innovation, although mankind is in crisis of COVID-19 due to excessive human development.

Anti-Corruption Policy to Ensure Public Order in the State Security System

  • Shchekhovska, Larysa;Gavrylechko, Yuriy;Vakuliuk, Vasyl;Ivanyuta, Viktoriya;Husarina, Nataliia
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.57-62
    • /
    • 2022
  • Today, in many countries of the world, the problems of forming and implementing anti-corruption policies are among the most pressing, since the scale of the spread of corruption poses a real threat to national security and democratic development. Without a victory over corruption as a system of social relations, any country will never be able to ensure the safety of its citizens, have a high standard of living, build an efficient economy and a democratic state based on the rule of law, protect its sovereignty, and become competitive among the developed countries of the world community. The main purpose of the article is to analyze the key aspects of the anti-corruption policy of ensuring public order in the state security system. The research methodology includes methods for researching aspects of the anti-corruption policy of ensuring public order in the state security system. Based on the results of the study, the main aspects of the anti-corruption policy of ensuring public order in the state security system are characterized.

Monkeypox and Its Recent OUTBREAKS; A Systemic Review

  • Zain Ul, Abedien;Kainat, Gul;Maheen, Shafiq;Khizar, Rahman
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.457-464
    • /
    • 2022
  • A public health concern emerging from a zoonotic disease. Monkeypox is caused by the orthopoxvirus specie Monkeypox virus (MPXV). Monkeypox was identified as the most common orthopoxvirus infection in humans following the eradication of smallpox. Monkeypox has a similar clinical presentation to smallpox. The MPXV is now considered a high-threat pathogen that causes a serious public-health problem. The continuous spread of Monkeypox virus from West Africa to all other places around the world throughout 2018 to 2022, have raised concerns that MPXV could have emerged to acquire the immunological and ecological niche vacated by smallpox virus. This review highlights the current knowledge about Monkeypox evolution, infection biology, and epidemiology around the world since from 1970 to 2022, with a focus on the human, viral, and cellular factors that influence virus emergence, infection, spread, and maintenance in nature. This paper also discusses the current therapeutic options for Monkeypox treatment and control. Under the right conditions, with limited smallpox vaccination and very little orthopoxvirus immunity in some areas of the world, MPXV could become a more efficient human pathogen. Finally, the review identified knowledge gaps, particularly in terms of identifying a definitive reservoir host for monkeypox and proposes future research endeavors to address the unanswered questions.

Urban Flood Vulnerability Assessment Based on FCDM and PSR Framework

  • Quan Feng;Seong Cheol Shin;Wonjoon Wang;Junhyeong Lee;Kyunghun Kim;Hung Soo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.181-181
    • /
    • 2023
  • Flood is a major threat to human society, and scientific assessment of flood risk in human living areas is an important task. In this study, two different methods were used to evaluate the flood in Ulsan City, and the results were comprehensively compared and analyzed. Based on the fuzzy mathematics and VIKOR method of the multi-objective decision system, similar evaluation results were obtained in the study area. The results show that due to the large number of rivers in Ulsan City and the relatively high exposure index, the whole city faces a high risk of flooding. However, fuzzy mathematics theory pays more attention to the negative impact of floods on people, and the adaptability in the Nam-gu District is lower. In contrast, the VIKOR method pays more attention to the positive role of the economy and population in flood protection, and thus obtains a higher score. Both approaches demonstrate that the city of Ulsan faces a high risk of flooding and that its citizens and policymakers need to invest in preventing flood damage.

  • PDF

Proposal of Artificial Intelligence Convergence Curriculum for Upskilling of Financial Manpower : Focusing on Private Bankers and Robo-Advisors

  • KIM, JiWon;WOO, HoSung
    • Fourth Industrial Review
    • /
    • v.2 no.1
    • /
    • pp.19-32
    • /
    • 2022
  • Purpose - As new technologies that have led the 4th industrial revolution spread after the COVID-19 pandemic, the business crisis of existing financial institutions and the threat of employee jobs are growing, especially in the financial sector. The purpose of this study is to propose a human-technology convergence curriculum for creating high value-added in financial institutions and upskilling financial manpower. Research design, data, and methodology - In this study, a curriculum was designed to strengthen job competency for Private Bankers, high-quality employees of a bank dealing with high-net-worth owners. The focus of the design is that learners acquire skills to use robo-advisors as a tool and supplement artificial intelligence ethics. Result - The curriculum is organized into a total of 16 classes, and the main contents are changes in the financial environment and financial consumers, the core technology of robo-advisors and AI ethics, and establishment and evaluation of hyper-personalized asset management strategies using robo-advisors. To achieve the educational goal, two evaluations are performed to derive individual tasks and team project results. Conclusion - Human-centered upskilling convergence education will contribute to improving employee value and expanding corporate high value-added business areas by utilizing new technologies as tools. It is expected that the development and application of convergence curriculum in various fields will continue to be advanced in the future.

Antibiotic resistance in Neisseria gonorrhoeae: broad-spectrum drug target identification using subtractive genomics

  • Umairah Natasya Mohd Omeershffudin;Suresh Kumar
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.5.1-5.13
    • /
    • 2023
  • Neisseria gonorrhoeae is a Gram-negative aerobic diplococcus bacterium that primarily causes sexually transmitted infections through direct human sexual contact. It is a major public health threat due to its impact on reproductive health, the widespread presence of antimicrobial resistance, and the lack of a vaccine. In this study, we used a bioinformatics approach and performed subtractive genomic methods to identify potential drug targets against the core proteome of N. gonorrhoeae (12 strains). In total, 12,300 protein sequences were retrieved, and paralogous proteins were removed using CD-HIT. The remaining sequences were analyzed for non-homology against the human proteome and gut microbiota, and screened for broad-spectrum analysis, druggability, and anti-target analysis. The proteins were also characterized for unique interactions between the host and pathogen through metabolic pathway analysis. Based on the subtractive genomic approach and subcellular localization, we identified one cytoplasmic protein, 2Fe-2S iron-sulfur cluster binding domain-containing protein (NGFG RS03485), as a potential drug target. This protein could be further exploited for drug development to create new medications and therapeutic agents for the treatment of N. gonorrhoeae infections.