KSII Transactions on Internet and Information Systems (TIIS)
/
제9권5호
/
pp.1856-1869
/
2015
This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.
인터넷은 유익하고 건전한 정보의 유통이 대부분이지만 최근에는 익명성과 상업성으로 인해 유해 정보가 급속하게 늘어나고 있는 추세이다. 이러한 부정적인 영향으로부터 청소년들과 어린이들을 보호하기 위하여, 본 논문은 유해사이트 분류를 자동으로 할 수 있는 시스템을 제안한다. 기존의 유해사이트 구축은 검색 요원들이 유해사이트를 돌아다니며 일일이 데이터를 수집하여 분류하거나 유해사이트의 내용 중에 텍스트만을 추출하여 패턴 매칭 방법으로 분류하는 것이 대부분이었지만, 본 논문은 기존 방법의 문제점을 해결하기 위하여 형태소 분석을 이용한 사이트의 유해도 측정과 Skin-Color 분포의 분석 결과를 병합하여 95% 이상의 정확도(Precision) 성능을 보이며. 신뢰도가 높은 유해사이트 자동 분류 시스템을 구현할 수 있다는 것을 증명하였다.
본 논문에서는 입력되는 3차원의 정지 또는 동적인 입체영상으로부터 색상과 깊이 특징을 결합하여 인간의 피부색상 영역을 강건하게 추출하는 새로운 방법을 제안한다. 제안된 방법에서는 먼저 스테레오 정합 기법을 이용하여 입력된 좌우 영상으로부터 카메라와 물체 사이의 거리를 나타내는 깊이 특징을 강건하게 추출한다. 그런 다음, 유사한 깊이 특징을 가지는 화소들을 레이블링하고, 레이블링한 영역 중에서 인간의 피부색상 분포를 가지는 영역들을 실제적인 피부색상 영역이라고 판단한다. 실험에서는 2차원 위주의 기존의 피부영역 추출 방법과 제안된 3차원의 특징을 활용한 방법의 성능을 정확도 측면에서 비교 및 평가하였다. 그 결과 제안된 방법은 색상 특징과 깊이 특징을 효과적으로 결합함으로써 기존의 배경 영역에서 부정확하게 검출되는 피부색상 영역의 오류를 상당수 제거하는 효과를 가지며, 이로 인해 전반적으로 보다 정확하게 피부영역을 추출하였다.
The detection of skin pigment is crucial in the diagnosis of skin diseases and in the evaluation of medical cosmetics and hairdressing. Accuracy in the detection is a basis for the prompt cure of skin diseases. This study presents a method to recognize and measure human skin pigment using Hemoglobin-Melanin (HM) coordinate. The proposed method extracts the skin area through a Gaussian skin-color model estimated from statistical analysis and decomposes the skin area into two pigments of hemoglobin and melanin using an Independent Component Analysis (ICA) algorithm. Then, we divide the two-dimensional (2D) HM coordinate into rectangular bins and compute the location histograms of hemoglobin and melanin for all the bins. We label the skin pigment of hemoglobin, melanin, and normal skin on all bins according to the Bayesian classifier. These bin-based HM projective histograms can quantify the skin pigment and compute the standard deviation on the total quantification of skin pigments surrounding normal skin. We tested our scheme using images taken under different illumination conditions. Several cosmetic coverings were used to test the performance of the proposed method. The experimental results show that the proposed method can detect skin pigments with more accuracy and evaluate cosmetic covering effects more effectively than conventional methods.
A real-time face detection is to find human faces robustly under the cluttered background free from the effect of occlusion by other objects or various lightening conditions. We propose a face detection system for real-time applications using wavelet decomposition method based on Gabor features. Firstly, skin candidate regions are extracted from the given image by skin color filtering and projection method. Then Gabor-feature based template matching is performed to choose face cadidate from the skin candidate regions. The chosen face candidate region is transformed into 2-level wavelet decomposition images, from which feature vectors are extracted for classification. Based on the extracted feature vectors, the face candidate region is finally classified into either face or nonface class by the Levenberg-Marguardt back-propagation neural network.
Hand region detection in images is an important process in many computer vision applications. It is a process that usually starts at a pixel-level, and that involves a pre-process of color space transformation followed by a classification process. A color space transformation is assumed to increase separability between skin classes for hands and non-skin classes for other parts, to increase similarity among different skin tones, and to bring a robust performance under varying illumination conditions, without any sound reasonings. In this work, we examine if the color space transformation does bring those benefits to the problem of hand region detection on a dataset of images with different hand postures, backgrounds, people, and illuminations. Results indicate that best of the color space is the normalized RGB.
Face detection plays an important role in face recognition, video surveillance, and human computer interface. In this paper, we present a face detection system using eye detection with progressive thresholding from a digital camera. The face candidate is detected by using skin color segmentation in the YCbCr color space. The face candidates are verified by detecting the eyes that is located by iterative thresholding and correlation coefficients. Preprocessing includes histogram equalization, log transformation, and gray-scale morphology for the emphasized eyes image. The distance of the eye candidate points generated by the progressive increasing threshold value is employed to extract the facial region. The process of the face detection is repeated by using the increasing threshold value. Experimental results show that more enhanced face detection in real time.
In this paper, we present an efficient face detection algorithm for locating vertical views of human faces in complex scenes. The algorithm models the distribution of human skin color in YCbCr color space and find various ace candidate regions. Face candidate regions are found by thresholding with predetermined thresholds. For each of these face candidate regions, The sobel edge operator is used to find edge regions. For each edge region, we used an ellipse detection algorithm which is similar to hough transform to refine the candidate region. Finally if a substantial number of he facial features (eye, mouth) are found successfully in the candidate region, we determine he ace candidate region as a face region. e show empirically that the presented algorithm an find the face region very well in the complex scenes.
Ingrid Pernet;Corinne Reymermier;Anne Guezennec;Jacqueline Viac;Branca, Jean-Eric;Joelle Guesnet;Eric Perrier
대한화장품학회:학술대회논문집
/
대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
/
pp.85-96
/
2003
Normal human skin, constantly challenged by environmental micro-organisms, has an innate ability to fight invading microbes through antimicrobial peptides. These peptides, described in both plant and animal kingdoms are able to inactivate a broad spectrum of micro-organisms. Mammalian defensins constitute one of the most common antimicrobial peptide family. Among the three human beta-defensins hBD1, hBD2 and hBD3 produced in epithelia, only hBD2 and hBD3 are inducible and additionally have been described as expressed by differentiated keratinocytes at site of inflammation and infection. The aims of these studies were to define a cell culture model in which the basal production of hBD could be detected and up-regulated in order to enhance skin auto-protection against micro-organisms. A specific Polymerase Chain Reaction method have been developed for hBD2 and hBD3 mRNA detection in non-differentiated monolayer keratinocytes cell culture. We have been able to demonstrate that in vitro, hBD2 and hBD3 expression in normal human keratinocytes could be detected and enhanced by TNF-alpha and IFN-gamma, in hypercalcic culture conditions. This research opened the possibility of the development of cosmetic active compounds, able to induce the expression of skin natural antibiotic peptides responsible about microflora ecology of the skin.
유해영상 검출에서 정확하게 피부 색상 영역을 획득하는 것은 매우 중요하다. 그러나 기존의 방법들은 서로 다른 인종, 조명, 화장, 사용된 카메라 등과 같은 여러 원인으로 인해 피부 색상 추출에 여전히 문제를 가지고 있으며, 사전에 미리 정해진 피부 색상 분포 모델을 이용하여 영상에서 피부 영역을 검출한다. 이러한 문제를 해결하기 위해 본 논문에서는 눈 주변 영역에서 샘플을 추출하여 입력 영상에 최적으로 적합된 피부 색상 분포 모델을 생성하여 피부 영역을 강건하게 분할하고, 분할된 피부 영역에서 성인 영상을 대표할 수 있는 특징을 추출한 후, 분할된 피부 영역이 나체의 몸체를 포함하고 있는지를 뉴럴 네트워크 다층 퍼셉트론을 통해 여러 대표적인 특징들을 통합하면서 추론하는 새로운 방법을 제안하다. 본 논문의 실험에서는 피부 색상 영역 분할과 성인영상 검출의 두 가지 성능 측면에서 제안한 방법의 성능이 기존의 방법에 비해 보다 우수함을 보인다. 본 논문에서 제안한 강건한 유해영상검출 기법은 얼굴 검출, 성인영상 필터링 등과 같은 관련된 여러 응용 분야에서 유용하게 활용될 것이라 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.