• Title/Summary/Keyword: human repeat

Search Result 187, Processing Time 0.028 seconds

Natural Indigo Dyeing of Hanji Fabric using Baker's Yeast: Effect of Yeast Concentration and Repeat Dyeing (효모를 사용한 한지직물의 천연인디고 염색 : 효모농도와 반복염색 효과)

  • Son, Kyunghee;Shin, Younsook;Yoo, Dong Il
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.191-201
    • /
    • 2021
  • In this study, an eco-friendly indigo reduction system(scale up reduction, use of buffer solution, and pH control) using baker's yeast(Saccharomyces cerevisiae) was applied for natural indigo(Polygonum tinctorium) dyeing of Hanji fabric and Hanji-mixture fabric(Hanji/Cotton, Hanji/Silk). The effect of concentration of baker's yeast, repeat dyeing, and bath reuse was investigated in terms of dye uptake indicating reduction power. And the oxidation-reduction potential(ORP) was monitored. We also evaluated color properties and colorfastness according to the color strength. The yeast concentration did not significantly affect the maximum reduction power. However, the highest yeast concentration was effective in improving the initial dye uptake, and its the reduction retention power was the most excellent. Even on the last reduction day, the effect of increasing the dye uptake by repeat dyeing was observed. And it was confirmed that the reduction bath could be reused for up to 30 days by supplementing yeast at the end of reduction. For all the fabrics used, deeper and darker PB color were obtained by repeat dyeing. As dyeing was repeated, purplish tint got stronger on the Hanji/Silk fabric compared to other fabrics. Regardless of the composition of Hanji fabrics and color strength, washing and dry cleaning fastness were relatively good with above rating 4-5, and fastness to rubbing and light were acceptable with a rating 3-4 ~ 4-5. The eco-friendly natural indigo dyeing process using niram and baker's yeast would offer global marketability and diversity of Hanji product as a sustainable high value-added material.

Stability of Human Centromeric Alphoid DNA Repeat during Propagation in Recombination-Deficient Yeast Strains (효모의 재조합 변이주를 이용한 인간 Centromeric Alphoid DNA Repeat의 안정성에 관한 연구)

  • Kim, Kwang-Sup;Shin, Young-Sun;Lee, Sang-Yeop;Ahn, Eun-Kyung;Do, Eun-Ju;Park, In-Ho;Leem, Sun-Hee;SunWoo, Yang-Il
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.243-249
    • /
    • 2007
  • The centromere is a highly differentiated structure of the chromosome that fulfills a multitude of essential mitotic and meiotic functions. Alphoid DNA (${\alpha}$-satellite) is the most abundant family of repeated DNA found at the centromere of all human chromosomes, and chromosomes of primates in general. The most important parts in the development of Human Artificial Chromosomes (HACs), are the isolation and maintenance of stability of centromeric region. For isolation of this region, we could use the targeting hook with alphoid DNA repeat and cloned by Transformation-Associated Recombination (TAR) cloning technique in yeast Saccharomyces cerevisiae. The method includes rolling-circle amplification (RCA) of repeats in vitro to 5 kb-length and elongation of the RCA products by homologous recombination in yeast. Four types of $35\;kb{\sim}50\;kb$ of centromeric DNA repeat arrays (2, 4, 5, 6 mer) are used to examine the stability of repeats in homologous recombination mutant strains (rad51, rad52, and rad54). Following the transformation into wild type, rad51 and rad54 mutant strains, there were frequent changes in inserted size. A rad52 mutant strain showed extremely low transformation frequency, but increased stability of centromeric DNA repeat arrays at least 3 times higher than other strains. Based on these results, the incidence of large mutations could be reduced using a rad52 mutant strain in maintenance of centromeric DNA repeat arrays. This genetic method may use more general application in the maintenance of tandem repeats in construction of HAC.

Optimization of a Multiplex DNA Amplification of Three Short Tandem Repeat Loci for Genetic Identification

  • Ryu, Jae-Song;Noh, Jae-Sang;Koo, Yoon-Mo;Lee, Choul-Gyun;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.873-876
    • /
    • 2000
  • Short tendem repeat (STR) loci have been used in the field of forensic science. There are literally hundreds of STR systems which have been mapped throughout the human genome. These STR loci are found in almost every chromosome in the genome. They may be amplified using a variety of PCR primers. In this study, a DNA genotyping system based on the multiplex amplification of highly polymorphic STR loci was developed. Three STR loci with nonoverlapping allele size ranges have been utilized in the multiplex amplification including the Neurotensin receptor gene, D21S11, and Human tyrosine hydroxylase gene. The optimal condition for triplex PCr was obtained in a solution with a total volume of $25{\mu}l$ containing 2.0 U of Taq polymerase, 3 mM of $MgCl_2$, $300{\mu}M$ of dNTP, 10 pmole of each primer set, an annealing temperature of $62^{\circ}C$, and 35 cycles. The optimized condition was successfully employed in a family paternity test.

  • PDF

Establishment of Transgenic Mouse with the E6 and E7 Genes of Human Papillomavirus Type 16 (인간 Papillomavirus의 E6, E7 유전자를 이용한 Transgenic Mouse의 확립)

  • Hwang, Yong-Il;Lee, Seung-Cheol;Kim, Hyun-Su
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.115-120
    • /
    • 1996
  • Human papillomavirus (HPV), especially type 16 and 18, has been closely associated with carcinomas and uterine cevical cancer, recently. From in vitro assays, E6 and E7 genes of HPV16 are closely linked with transformation of cell lines of rodent fibroplasts. However, the transforming activity of E6 and E7 genes of HPV type 16 in vivo has not been fully elucidated. For explaining this mechanism, we prepared a expression system with the promoter of mouse mammary tumorvirus long terminal repeat and E6E7's open reading frames. This expression system was introduced in rodent cell lines, No. 7, 3Y1 and shown normal transforming abilities. And, we produced transgenic mice with E6, E7 expression system. These transgenic mice were confirmed from Southern blot analysis. One male of them was observed enlargement of the testis after 5 months postdelivery.

  • PDF

Evidence of Tandem Repeat and Extra Thiol-groups Resulted in the Polymeric Formation of Bovine Haptoglobin: A Unique Structure of Hp 2-2 Phenotype

  • Lai, Yi An;Lai, I Hsiang;Tseng, Chi Feng;Lee, James;Mao, Simon J.T.
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1028-1038
    • /
    • 2007
  • Human plasma Hp is classified as 1-1, 2-1, and 2-2. They are inherited from two alleles Hp 1 and Hp 2, but there is only Hp 1 in almost all the animal species. Hp 2-2 molecule is extremely large and heterogeneous associated with the development of inflammatory-related diseases. In this study, we expressed entire bovine Hp in E. coli as a $\alpha\beta$ linear form. Interestingly, the antibodies prepared against this form could recognize the subunit of native Hp. In stead of a complicated column method, the antibody was able to isolate bovine Hp via immunoaffinity and gelfiltration columns. The isolated Hp is polymeric containing two major molecular forms (660 and 730 kDa). Their size and hemoglobin binding complex are significantly larger than that of human Hp 2-2. The amino-acid sequence deducted from the nucleotide sequence is similar to human Hp 2 containing a tandem repeat over the $\alpha$ chain. Thus, the Hp 2 allele is not unique in human. We also found that there is one additional -SH group (Cys-97) in bovine $\alpha$ chain with a total of 8 -SH groups, which may be responsible for the overall polymeric structure that is markedly different from human Hp 2-2. The significance of the finding and its relationship to structural evolution are also discussed.

Angiogenic Effect of Cardiac Ankyrin Repeat Protein Overexpression in Vascular Endo-thelial Cell (Cardiac Ankyrin Repeat Protein의 과량발현이 혈관내피세포에서 갖는 혈관신생 촉진 효과)

  • Kong, Hoon-Young;Byun, Jong-Hoe
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.282-288
    • /
    • 2008
  • Tissue ischemia resulting from the constriction or obstruction of blood vessels leads to an illness that may affect many organs including the heart, brain, and legs. In recent years, considerable progress has been made in the field of therapeutic angiogenesis and the new approaches are expected to cure those "no-option patients" who are unsuited to conventional therapies. Although single angiogenic growth factor may be successful in inducing angiogenesis, combination of multiple growth factors is increasingly sought these days to augment the therapeutic responses. This trend is proper in light of the fact that blood vessel formation is a complex and multi-step process that requires the actions of many different factors. To meet the growing need for functionally significant blood flow recovery in the ischemic tissues, a novel strategy that can provide concerted actions of multiple factors is required. One way to achieve such a goal is to use a transcription factor that can orchestrate the expression of multiple target genes in the ischemic region and thus induce significant level of angiogenesis. Here, a putative transcription factor, cardiac ankyrin repeat protein (CARP), was evaluated in adenoviral vector context for angiogenic activity in human umbilical vein endothelial cells. The results indicated significant increase in proliferation, capillary-like structure formation, and induction of vascular endothelial growth factor, a typical angiogenic gene. Taken together, these results suggest that CARP represents itself as a novel target for therapeutic angiogenesis and warrants further investigation.

Genetic Diversity of Ascaris in China Assessed Using Simple Sequence Repeat Markers

  • Zhou, Chunhua;Jian, Shaoqing;Peng, Weidong;Li, Min
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • The giant roundworm Ascaris infects pigs and people worldwide and causes serious diseases. The taxonomic relationship between Ascaris suum and Ascaris lumbricoides is still unclear. The purpose of the present study was to investigate the genetic diversity and population genetic structure of 258 Ascaris specimens from humans and pigs from 6 sympatric regions in Ascaris-endemic regions of China using existing simple sequence repeat data. The microsatellite markers showed a high level of allelic richness and genetic diversity in the samples. Each of the populations demonstrated excess homozygosity (Ho0). According to a genetic differentiation index (Fst=0.0593), there was a high-level of gene flow in the Ascaris populations. A hierarchical analysis on molecular variance revealed remarkably high levels of variation within the populations. Moreover, a population structure analysis indicated that Ascaris populations fell into 3 main genetic clusters, interpreted as A. suum, A. lumbricoides, and a hybrid of the species. We speculated that humans can be infected with A. lumbricoides, A. suum, and the hybrid, but pigs were mainly infected with A. suum. This study provided new information on the genetic diversity and population structure of Ascaris from human and pigs in China, which can be used for designing Ascaris control strategies. It can also be beneficial to understand the introgression of host affiliation.