DOI QR코드

DOI QR Code

Genetic Diversity of Ascaris in China Assessed Using Simple Sequence Repeat Markers

  • Received : 2017.11.24
  • Accepted : 2018.03.25
  • Published : 2018.04.30

Abstract

The giant roundworm Ascaris infects pigs and people worldwide and causes serious diseases. The taxonomic relationship between Ascaris suum and Ascaris lumbricoides is still unclear. The purpose of the present study was to investigate the genetic diversity and population genetic structure of 258 Ascaris specimens from humans and pigs from 6 sympatric regions in Ascaris-endemic regions of China using existing simple sequence repeat data. The microsatellite markers showed a high level of allelic richness and genetic diversity in the samples. Each of the populations demonstrated excess homozygosity (Ho0). According to a genetic differentiation index (Fst=0.0593), there was a high-level of gene flow in the Ascaris populations. A hierarchical analysis on molecular variance revealed remarkably high levels of variation within the populations. Moreover, a population structure analysis indicated that Ascaris populations fell into 3 main genetic clusters, interpreted as A. suum, A. lumbricoides, and a hybrid of the species. We speculated that humans can be infected with A. lumbricoides, A. suum, and the hybrid, but pigs were mainly infected with A. suum. This study provided new information on the genetic diversity and population structure of Ascaris from human and pigs in China, which can be used for designing Ascaris control strategies. It can also be beneficial to understand the introgression of host affiliation.

Keywords

References

  1. Brooker SJ, Pullan RL. Ascaris lumbricoides and ascariasis: estimating numbers infected and burden of disease. In Holland C ed. Ascaris: The Neglected Parasite. London, UK. Academic Press. 2013, pp 343-362.
  2. Anderson TJ. Ascaris infections in humans from North America: molecular evidence for cross-infection. Parasitology 1995; 110: 215-219. https://doi.org/10.1017/S0031182000063988
  3. Nejsum P, Parker ED Jr, Frydenberg J, Roepstorff A, Boes J, Haque R, Astrup I, Prag J, Skov Sorensen UB. Ascariasis is a zoonosis in Denmark. J Clin Microb 2005; 43: 1142-1148. https://doi.org/10.1128/JCM.43.3.1142-1148.2005
  4. Arizono N, Yoshimura Y, Tohzaka N, Yamada M, Tegoshi T, Onishi K, Uchikawa R. Ascariasis in Japan: is pig-derived Ascaris infecting humans? Jpn J Infect Dis 2010; 63: 447-448.
  5. Zhou C, Yuan K, Tang X, Hu N, Peng W. Molecular genetic evidence for polyandry in Ascaris suum. Parasitol Res 2011; 108: 703-708. https://doi.org/10.1007/s00436-010-2116-3
  6. Leles D, Gardner SL, Reinhard K, Iniguez A, Araujo A. Are Ascaris lumbricoides and Ascaris suum a single species? Parasite Vector 2012; 5: 42. https://doi.org/10.1186/1756-3305-5-42
  7. Zhou C, Li M, Yuan K, Deng S, Peng W. Pig Ascaris: an important source of human ascariasis in china. Infect Genet Evol 2012; 12: 1172-1177. https://doi.org/10.1016/j.meegid.2012.04.016
  8. Peng W, Yuan K, Hu M, Zhou X, Gasser RB. Mutation scanningcoupled analysis of haplotypic variability in mitochondrial DNA regions reveals low gene flow between human and porcine Ascaris in endemic regions of china. Electrophoresis 2005; 26: 4317-4326. https://doi.org/10.1002/elps.200500276
  9. Cavallero S, Snabel V, Pacella F, Perrone V, D'Amelio S. Phylogeographical studies of Ascaris spp. based on ribosomal and mitochondrial DNA sequences. PLoS Negl Trop Dis 2013; 7: e2170. https://doi.org/10.1371/journal.pntd.0002170
  10. Shao CC, Xu MJ, Alasaad S, Song HQ, Peng L, Tao JP, Zhu XQ. Comparative analysis of microRNA profiles between adult Ascaris lumbricoides and Ascaris suum. BMC Vet Res 2014; 10: 99. https://doi.org/10.1186/1746-6148-10-99
  11. Peng W, Yuan K, Zhou X, Hu M, Abs EL-Osta YG, Gasser RB. Molecular epidemiological investigation of Ascaris, genotypes in China based on single-strand conformation polymorphism analysis of ribosomal DNA. Electrophoresis 2003; 24: 2308-2315. https://doi.org/10.1002/elps.200305455
  12. da Silva Alves EB, Conceicao MJ, Leles D. Ascaris lumbricoides, Ascaris suum, or "Ascaris lumbrisuum"? J Infect Dis 2016; 213: 1355.
  13. Anderson TJ. The dangers of using single locus markers in parasite epidemiology: Ascaris as a case study. Trends Parasitol 2001; 17: 183-188. https://doi.org/10.1016/S1471-4922(00)01944-9
  14. Yu H, Gao S, Chen A, Kong L, Li Q. Genetic diversity and population structure of the ark shell Scapharca broughtonii along the coast of China based on microsatellites. Biochem Syst Ecol 2015; 58: 235-241. https://doi.org/10.1016/j.bse.2014.12.003
  15. Anderson JD, Williams-Blangero S, Anderson TJ. Spurious genotypes in female nematodes resulting from contamination with male DNA. J Parasitol 2003; 89: 1232-1234. https://doi.org/10.1645/GE-99R
  16. Criscione CD, Anderson JD, Raby K, Sudimack D, Subedi J, Rai DR, Upadhayay RP, Jha B, Williams-Blangero S, Anderson TJ. Microsatellite markers for the human nematode parasite Ascaris lumbricoides: development and assessment of utility. J Parasitol 2007; 93: 704-708. https://doi.org/10.1645/GE-1058R.1
  17. Betson M, Halstead FD, Nejsum P, Imison E, Khamis IS, Sousa- Figueiredo JC, Rollinson D, Stothard JR. A molecular epidemiological investigation of Ascaris on Unguja, Zanzibar using isoenzyme analysis, DNA barcoding and microsatellite DNA profiling. T Roy Soc Trop Med H 2011; 105: 370-379. https://doi.org/10.1016/j.trstmh.2011.04.009
  18. Betson M, Nejsum P, Bendall RP, Deb RM, Stothard JR. Molecular epidemiology of ascariasis: a global perspective on the transmission dynamics of Ascaris in people and pigs. J Infect Dis 2014; 210: 932-941. https://doi.org/10.1093/infdis/jiu193
  19. Zhou CH, Peng WD. Genetic diversity of Ascaris with the shared genotype G2 from humans and pigs in China. Chin J Zoon 2012; 28: 1093-1097 (in Chinese).
  20. Betson M, Nejsum P, Llewellyn-Hughes J, Griffin C, Atuhaire A, Arinaitwe M, Adriko M, Ruggiana A, Turyakira G, Kabatereine NB, Stothard JR. Genetic diversity of Ascaris in southwestern Uganda. T Roy Soc Trop Med H 2012; 106: 75-83. https://doi.org/10.1016/j.trstmh.2011.10.011
  21. Zhou C, Li M, Yuan K, Hu N, Peng W. Phylogeography of Ascaris lumbricoides and A. suum from China. Parasitol Res 2011; 109: 329-338. https://doi.org/10.1007/s00436-011-2260-4
  22. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 2004; 4: 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  23. Goudet J. Fstat, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Updated from goudet (1995). My Publications. 2001.
  24. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4.05, logiciel sous Windows TM pour la genetique des populations. Laboratoire Genome, Populations, Interactions, CNRS UMR 5171, Universite de Montpellier II, Montpellier (France). 2004.
  25. Rousset F. Genepop (version 4.0) Genepop'007: a complete reimplementation of the genepop software for windows and Linux. Mol Ecol Resour 2008; 8: 103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x
  26. Chapuis MP, Lecoq M, Michalakis Y, Loiseau A, Sword GA, Piry S, Estoup A. Do outbreaks affect genetic population structure? a worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Mol Ecol 2008; 17: 3640-3653. https://doi.org/10.1111/j.1365-294X.2008.03869.x
  27. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000; 155: 945-959.
  28. Earl DA, Vonholdt BM. Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 2012; 4: 359-361. https://doi.org/10.1007/s12686-011-9548-7
  29. Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 2010; 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  30. Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation: a review. Mol Ecol 2002; 11: 1-16. https://doi.org/10.1046/j.0962-1083.2001.01418.x
  31. van Oosterhout C, Weetman D, Hutchinson WF. Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 2006; 6: 255-256. https://doi.org/10.1111/j.1471-8286.2005.01082.x
  32. Chapuis MP, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 2007; 24: 621-631. https://doi.org/10.1093/molbev/msl191
  33. Maurer HP, Knaak C, Melchinger AE, Ouzunova M, Frisch M. Linkage disequilibrium between SSR markers in six pools of elite lines of an European breeding program for hybrid maize [Zea mays L.; simple sequence repeats]. Maydica 2006; 51: 269-279.
  34. Yu J, Buckler ES. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 2006; 17: 155-160. https://doi.org/10.1016/j.copbio.2006.02.003
  35. Gaut BS, Long AD. The lowdown on linkage disequilibrium. Plant Cell 2003; 15: 1502-1506. https://doi.org/10.1105/tpc.150730
  36. Chen MH, Dorn S. Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bull Entomol Res 2010; 100: 75-85. https://doi.org/10.1017/S0007485309006786
  37. Wright S. Evolution and the Genetics of Populations. Vol. 1. Genetic and Biometrie Foundations. Chicago, USA. University of Chicago. 1968.
  38. Peng W, Yuan K, Hu M, Peng G, Zhou X, Hu N, Gasser RB. Experimental infections of pigs and mice with selected genotypes of Ascaris. Parasitology 2006; 133: 651-657. https://doi.org/10.1017/S0031182006000643
  39. Demeler J, Ramunke S, Wolken S, Ianiello D, Rinaldi L, Gahutu JB, Cringoli G, von Samson-Himmelstjerna G, Krucken J. Discrimination of gastrointestinal nematode eggs from crude fecal egg preparations by inhibitor-resistant conventional and realtime PCR. PLoS One 2013; 8: e61285. https://doi.org/10.1371/journal.pone.0061285