• Title/Summary/Keyword: human pose

Search Result 351, Processing Time 0.025 seconds

2.5D human pose estimation for shadow puppet animation

  • Liu, Shiguang;Hua, Guoguang;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2042-2059
    • /
    • 2019
  • Digital shadow puppet has traditionally relied on expensive motion capture equipments and complex design. In this paper, a low-cost driven technique is presented, that captures human pose estimation data with simple camera from real scenarios, and use them to drive virtual Chinese shadow play in a 2.5D scene. We propose a special method for extracting human pose data for driving virtual Chinese shadow play, which is called 2.5D human pose estimation. Firstly, we use the 3D human pose estimation method to obtain the initial data. In the process of the following transformation, we treat the depth feature as an implicit feature, and map body joints to the range of constraints. We call the obtain pose data as 2.5D pose data. However, the 2.5D pose data can not better control the shadow puppet directly, due to the difference in motion pattern and composition structure between real pose and shadow puppet. To this end, the 2.5D pose data transformation is carried out in the implicit pose mapping space based on self-network and the final 2.5D pose expression data is produced for animating shadow puppets. Experimental results have demonstrated the effectiveness of our new method.

Pictorial Model of Upper Body based Pose Recognition and Particle Filter Tracking (그림모델과 파티클필터를 이용한 인간 정면 상반신 포즈 인식)

  • Oh, Chi-Min;Islam, Md. Zahidul;Kim, Min-Wook;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.186-192
    • /
    • 2009
  • In this paper, we represent the recognition method for human frontal upper body pose. In HCI(Human Computer Interaction) and HRI(Human Robot Interaction) when a interaction is established the human has usually frontal direction to the robot or computer and use hand gestures then we decide to focus on human frontal upper-body pose, The two main difficulties are firstly human pose is consist of many parts which cause high DOF(Degree Of Freedom) then the modeling of human pose is difficult. Secondly the matching between image features and modeling information is difficult. Then using Pictorial Model we model the human main poses which are mainly took the space of frontal upper-body poses and we recognize the main poses by making main pose database. using determined main pose we used the model parameters for particle filter which predicts the posterior distribution for pose parameters and can determine more specific pose by updating model parameters from the particle having the maximum likelihood. Therefore based on recognizing main poses and tracking the specific pose we recognize the human frontal upper body poses.

  • PDF

Robust 2D human upper-body pose estimation with fully convolutional network

  • Lee, Seunghee;Koo, Jungmo;Kim, Jinki;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.2
    • /
    • pp.129-140
    • /
    • 2018
  • With the increasing demand for the development of human pose estimation, such as human-computer interaction and human activity recognition, there have been numerous approaches to detect the 2D poses of people in images more efficiently. Despite many years of human pose estimation research, the estimation of human poses with images remains difficult to produce satisfactory results. In this study, we propose a robust 2D human body pose estimation method using an RGB camera sensor. Our pose estimation method is efficient and cost-effective since the use of RGB camera sensor is economically beneficial compared to more commonly used high-priced sensors. For the estimation of upper-body joint positions, semantic segmentation with a fully convolutional network was exploited. From acquired RGB images, joint heatmaps accurately estimate the coordinates of the location of each joint. The network architecture was designed to learn and detect the locations of joints via the sequential prediction processing method. Our proposed method was tested and validated for efficient estimation of the human upper-body pose. The obtained results reveal the potential of a simple RGB camera sensor for human pose estimation applications.

Developing Interactive Game Contents using 3D Human Pose Recognition (3차원 인체 포즈 인식을 이용한 상호작용 게임 콘텐츠 개발)

  • Choi, Yoon-Ji;Park, Jae-Wan;Song, Dae-Hyeon;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.619-628
    • /
    • 2011
  • Normally vision-based 3D human pose recognition technology is used to method for convey human gesture in HCI(Human-Computer Interaction). 2D pose model based recognition method recognizes simple 2D human pose in particular environment. On the other hand, 3D pose model which describes 3D human body skeletal structure can recognize more complex 3D pose than 2D pose model in because it can use joint angle and shape information of body part. In this paper, we describe a development of interactive game contents using pose recognition interface that using 3D human body joint information. Our system was proposed for the purpose that users can control the game contents with body motion without any additional equipment. Poses are recognized comparing current input pose and predefined pose template which is consist of 14 human body joint 3D information. We implement the game contents with the our pose recognition system and make sure about the efficiency of our proposed system. In the future, we will improve the system that can be recognized poses in various environments robustly.

A Distributed Real-time 3D Pose Estimation Framework based on Asynchronous Multiviews

  • Taemin, Hwang;Jieun, Kim;Minjoon, Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.559-575
    • /
    • 2023
  • 3D human pose estimation is widely applied in various fields, including action recognition, sports analysis, and human-computer interaction. 3D human pose estimation has achieved significant progress with the introduction of convolutional neural network (CNN). Recently, several researches have proposed the use of multiview approaches to avoid occlusions in single-view approaches. However, as the number of cameras increases, a 3D pose estimation system relying on a CNN may lack in computational resources. In addition, when a single host system uses multiple cameras, the data transition speed becomes inadequate owing to bandwidth limitations. To address this problem, we propose a distributed real-time 3D pose estimation framework based on asynchronous multiple cameras. The proposed framework comprises a central server and multiple edge devices. Each multiple-edge device estimates a 2D human pose from its view and sendsit to the central server. Subsequently, the central server synchronizes the received 2D human pose data based on the timestamps. Finally, the central server reconstructs a 3D human pose using geometrical triangulation. We demonstrate that the proposed framework increases the percentage of detected joints and successfully estimates 3D human poses in real-time.

Multi-resolution Fusion Network for Human Pose Estimation in Low-resolution Images

  • Kim, Boeun;Choo, YeonSeung;Jeong, Hea In;Kim, Chung-Il;Shin, Saim;Kim, Jungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2328-2344
    • /
    • 2022
  • 2D human pose estimation still faces difficulty in low-resolution images. Most existing top-down approaches scale up the target human bonding box images to the large size and insert the scaled image into the network. Due to up-sampling, artifacts occur in the low-resolution target images, and the degraded images adversely affect the accurate estimation of the joint positions. To address this issue, we propose a multi-resolution input feature fusion network for human pose estimation. Specifically, the bounding box image of the target human is rescaled to multiple input images of various sizes, and the features extracted from the multiple images are fused in the network. Moreover, we introduce a guiding channel which induces the multi-resolution input features to alternatively affect the network according to the resolution of the target image. We conduct experiments on MS COCO dataset which is a representative dataset for 2D human pose estimation, where our method achieves superior performance compared to the strong baseline HRNet and the previous state-of-the-art methods.

Empirical Comparison of Deep Learning Networks on Backbone Method of Human Pose Estimation

  • Rim, Beanbonyka;Kim, Junseob;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.21-29
    • /
    • 2020
  • Accurate estimation of human pose relies on backbone method in which its role is to extract feature map. Up to dated, the method of backbone feature extraction is conducted by the plain convolutional neural networks named by CNN and the residual neural networks named by Resnet, both of which have various architectures and performances. The CNN family network such as VGG which is well-known as a multiple stacked hidden layers architecture of deep learning methods, is base and simple while Resnet which is a bottleneck layers architecture yields fewer parameters and outperform. They have achieved inspired results as a backbone network in human pose estimation. However, they were used then followed by different pose estimation networks named by pose parsing module. Therefore, in this paper, we present a comparison between the plain CNN family network (VGG) and bottleneck network (Resnet) as a backbone method in the same pose parsing module. We investigate their performances such as number of parameters, loss score, precision and recall. We experiment them in the bottom-up method of human pose estimation system by adapted the pose parsing module of openpose. Our experimental results show that the backbone method using VGG network outperforms the Resent network with fewer parameter, lower loss score and higher accuracy of precision and recall.

2D Human Pose Estimation based on Object Detection using RGB-D information

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.800-816
    • /
    • 2018
  • In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.

A Spatial-Temporal Three-Dimensional Human Pose Reconstruction Framework

  • Nguyen, Xuan Thanh;Ngo, Thi Duyen;Le, Thanh Ha
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.399-409
    • /
    • 2019
  • Three-dimensional (3D) human pose reconstruction from single-view image is a difficult and challenging topic. Existing approaches mostly process frame-by-frame independently while inter-frames are highly correlated in a sequence. In contrast, we introduce a novel spatial-temporal 3D human pose reconstruction framework that leverages both intra and inter-frame relationships in consecutive 2D pose sequences. Orthogonal matching pursuit (OMP) algorithm, pre-trained pose-angle limits and temporal models have been implemented. Several quantitative comparisons between our proposed framework and recent works have been studied on CMU motion capture dataset and Vietnamese traditional dance sequences. Our framework outperforms others by 10% lower of Euclidean reconstruction error and more robust against Gaussian noise. Additionally, it is also important to mention that our reconstructed 3D pose sequences are more natural and smoother than others.

Recent Trends in Human Pose Estimation Based on a Single Image (단일 이미지에 기반을 둔 사람의 포즈 추정에 대한 연구 동향)

  • Cho, Jungchan
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.5
    • /
    • pp.31-42
    • /
    • 2019
  • With the recent development of deep learning technology, remarkable achievements have been made in many research areas of computer vision. Deep learning has also made dramatic improvement in two-dimensional or three-dimensional human pose estimation based on a single image, and many researchers have been expanding the scope of this problem. The human pose estimation is one of the most important research fields because there are various applications, especially it is a key factor in understanding the behavior, state, and intention of people in image or video analysis. Based on this background, this paper surveys research trends in estimating human poses based on a single image. Because there are various research results for robust and accurate human pose estimation, this paper introduces them in two separated subsections: 2D human pose estimation and 3D human pose estimation. Moreover, this paper summarizes famous data sets used in this field and introduces various studies which utilize human poses to solve their own problem.