
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 2, Feb. 2023                                      559 
Copyright ⓒ 2023 KSII    

 
 
A preliminary version of this paper was presented at APIC-IST 2022, and was selected as an outstanding paper. 
This research is supported by Ministry of Culture, Sports and Tourism and Korea Creative Content Agency (Project 
number: R2021040128) 
 
http://doi.org/10.3837/tiis.2023.02.015                                                                                                                 ISSN : 1976-7277 

A Distributed Real-time 3D Pose 
Estimation Framework based on 

Asynchronous Multiviews 
 

Taemin Hwang1, Jieun Kim1 and Minjoon Kim1,* 
1 Department of Data Convergence Platform Research Center 

Korea Electronics Technology Institute 
Seongnam, South Korea 

[e-mail: taemin.hwang@keti.re.kr, jekim@keti.re.kr, mjoon@keti.re.kr] 
*Corresponding author: Minjoon Kim 

 
Received August 9, 2022; revised October 7, 2022; accepted October 27, 2022;  

published February 28, 2023 

 
Abstract 

 
3D human pose estimation is widely applied in various fields, including action recognition, 
sports analysis, and human-computer interaction. 3D human pose estimation has achieved 
significant progress with the introduction of convolutional neural network (CNN). Recently, 
several researches have proposed the use of multiview approaches to avoid occlusions in 
single-view approaches. However, as the number of cameras increases, a 3D pose estimation 
system relying on a CNN may lack in computational resources. In addition, when a single host 
system uses multiple cameras, the data transition speed becomes inadequate owing to 
bandwidth limitations. To address this problem, we propose a distributed real-time 3D pose 
estimation framework based on asynchronous multiple cameras. The proposed framework 
comprises a central server and multiple edge devices. Each multiple-edge device estimates a 
2D human pose from its view and sends it to the central server. Subsequently, the central server 
synchronizes the received 2D human pose data based on the timestamps. Finally, the central 
server reconstructs a 3D human pose using geometrical triangulation. We demonstrate that the 
proposed framework increases the percentage of detected joints and successfully estimates 3D 
human poses in real-time. 
 
 
Keywords: Computer vision, edge processing, multiple view geometry, object detection, 
pose estimation. 

 



560                                                                                           Hwang et al: Real-time 3D Pose Estimation Framework  
based on Asynchronous Multi-views 

1. Introduction 

Reconstructing 3D human poses accurately has been a long-standing problem in computer 
vision. The 3D human pose reconstruction is applied in various fields, such as motion capture, 
human-computer interaction, video surveillance, and sports broadcasting [1]. Traditionally, 
marker-based motion capture systems have been used to continuously track 3D human poses 
in fields, such as entertainment and gaming. However, marker-based systems have a 
limitation—their controllers must wear marker suits with attached sensors that include optical 
markers or mounted cameras for the system to capture their motions [2]. Further, the system 
is unable to capture the motions of people wearing casual clothing, and using marker suits 
involves additional costs. 

Recently, new techniques in computer vision have enabled the use of markerless 
approaches in motion capture systems. The initial markerless approaches are machine 
learning-based strategies to convert a motion capture problem into a regression or pose 
classification problem. With the rapid development of convolutional neural network (CNN), 
several researches have proposed solutions to improve human pose estimation by utilizing a 
CNN. DeepPose was first proposed by Toshev et al. [3] to solve the 2D human pose estimation 
problem with a CNN model. Since then, several studies have proposed solutions to improve 
3D pose estimation by introducing multistage convolution architectures [4]. Subsequently, 
various 3D pose estimation approaches from a single image have been proposed. Pavlakos et 
al. introduced deep CNNs based on the stacked hourglass architecture, instead of 2D pose 
regression, to infer 3D pose [5]. Further, Martinez et al. introduced a CNN model to lift a 2D 
ground-truth pose to a 3D space from a single image [6]. 

However, in these single-view scenarios, several occlusions issues arise. For example, self-
occlusions occur when a person adopts complex poses, such as standing with one’s back 
toward a single camera or when the locations of one’s elbow and wrist are covered by the 
upper torso. To avoid these occlusions in a single view scenario and take advantage of the 
complementary information from the multiple views, multiview approaches have been 
proposed. Multiview approaches typically solve the single view occlusion issue using a two-
stage concept. The first stage detects 2D human poses from multiple views, and the second 
stage aggregates the 2D human poses and lifts them to a 3D space using geometrical 
triangulation, reconstructing a 3D human pose [7, 8]. Although remarkable advances have 
been made in multiview 3D reconstruction, the following challenges still exist in practice. As 
the number of cameras increases, 3D pose estimation systems relying on CNN may lack 
adequate computational resources [9] and endure multimedia traffic overloads. When a single 
host system uses multiple cameras, the data transition speed becomes inadequate because of 
bandwidth limitations [10]. In addition, although only a few cameras are used to detect 2D 
joints, the resulting 3D human pose reconstruction might be inaccurate owing to the time 
difference between the capturing of motions by asynchronous cameras. Therefore, the 
projection rays from these cameras may not meet if the cameras capture a moving point at 
different times [10]. 

This paper aims to estimate 3D human pose in real time. The key idea is to use a distributed 
system based on edge processing, which comprises a single central server and multiple edge 
devices. The edge devices read RGB images from a calibrated camera and detect 2D human 
poses using a CNN model. The on-device AI boards that use the CNN model are considered 
as edge devices. Subsequently, each edge device transmits a 2D human pose with a timestamp, 
instead of the raw RGB image, to a central server. The data size of a 2D human pose and 
timestamp is much smaller than that of a raw RGB image, resulting in reduced data traffic; 
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furthermore, the computational load of the CNN is distributed among the edge devices. Finally, 
the central server receives multiple 2D human poses from the edge devices and reconstructs a 
3D human pose by combining the 2D human poses using a geometrical triangulation technique, 
such as direct linear transform (DLT). 

Additionally, the solution to the issue with asynchronous cameras is crucial to improve the 
accuracy of 3D pose estimation. Therefore, the central server creates a set of 2D human poses 
that were captured at a similar time by comparing the timestamps in the received data. This 
algorithm proposed for time synchronization improves the accuracy of the 3D human pose 
estimation.  

In summary, the main contributions of this work are:  
 We propose a distributed system which consists of multiple edge devices to estimate 

3D human pose in real-time, while the earlier researches have focused on a single host 
system. The multiple edge devices can reduce the computational load of the central 
server and data size through the network. 

 In addition, we propose an algorithm to increase the accuracy of 3D human pose 
estimation results by reducing data mismatch in the proposed distributed system. 

 Also, we implement the prototype of the proposed system and demonstrate the 
proposed system successfully estimates 3D human pose in real-time in a practical 
environment. 

2. Related Work 

2.1 2D Human Pose Detection 
Traditional human pose estimation was based on pictorial structure models, such as tree-
structured graphical and hierarchical models [11-14]. These models were used to roughly 
encode the relationships among body parts. In addition, these approaches are based on 
manually created features and cannot achieve high performance. Lately, a deep neural network 
(DNN) has been applied in several areas of image processing. Compared with traditional 
methods, DNN-based methods are trained with a large set of images and are highly robust, 
resulting in a stable image-processing performance. Depending on the structure of a neural 
network, these methods are classified as single CNN [15, 16], multilevel CNN [7, 17], or 
recurrent neural network (RNN) methods [18, 19]. Each method has its advantages and helps 
achieve high image-processing performance. The single CNN method enables low network 
complexity, and the multilevel CNN method enhances the performance by cascading and 
synthesizing the network in various ways. The RNN method achieves better performance and 
overcomes the occlusion problem. However, these methods still endure the disadvantages of 
complex computations and high time consumption. 

2.2 3D Human Pose Detection on Single Camera 
With the rapid development of DNNs, several methods to estimate 3D human poses using a 
single camera are being studied. The simplest way to estimate 3D human poses is to design an 
end-to-end network to predict the 3D coordinates of the joints in each pose. There are two 
methods to directly map input images to 3D body joint positions: detection-based [20, 21] and 
regression-based methods [22, 23]. Detection-based methods predict a likelihood heatmap for 
each joint and determine the human pose by extracting the maximum likelihood. In contrast, 
regression-based methods directly predict the locations of the joints relative to the position of 
the root joint. Detection-based and regression-based methods endure calculation complexity 
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and low detection performance, respectively. Another approach to predict a 3D human pose is 
to lift a 2D pose to a 3D space. Several studies have attempted to improve the 3D pose 
estimation performance using the results of 2D pose estimation [6, 24]. Many approaches, 
such as depth value, geometric relationships, and additional networks, have been used to 
bridge the gap between 2D and 3D poses. However, owing to the lack of resources, generating 
a realistic 3D pose with monocular images is limited. 

2.3 Multiview 3D Human Pose Detection 
Multiview images can significantly reduce the ambiguity in image matching. However, the 
methods used to fuse information from multiple perspectives play an important role. Firstly, 
Pavlakos et al. combined each 2D joint heatmap obtained from multiple views using a 3D 
pictorial structures model [25]. The 3D pose was estimated using the average of the projected 
3D location in each joint. Additional image optimization techniques, such as iterative 
refinement framework and feedback to the CNN model, were proposed to obtain precise joint 
locations [26, 27]. Secondly, methods using multiview consistency were proposed to reduce 
the need for annotated datasets by forcing systems to predict the same pose from all views 
only during training [28]. These methods were extended to realize an encoder-decoder network 
using unlabeled images by employing a semi-supervised CNN.  

Furthermore, the triangulation method can be used for 3D human pose detection. In this 
method, feature maps are aggregated and processed by a 3D convolutional neural network 
without 3D projection [1, 29]. Further, 2D joint positions and confidence levels of multiple 
views are calculated using an algebraic triangulation module, yielding a 3D pose. However, 
because the 2D joint predictions are determined independently, noise inequality might exist in 
the results. 

3. System Architecture 
The proposed system comprises a single central server and multiple edge devices, as shown in 
Fig. 1. The proposed system shown in Fig 1 is basically same with a well-known 3D pose 
estimation system with multiviews [8, 29]. The major difference from the earlier system is that 
the proposed system consists with multiple edge device. To reduce the computational load of 
the central server and data size through the network, the multiple edge device detects 2D poses 
simultaneously and send it to the central server. A video in standard HD resolution (1280 x 
720) with 60 FPS has 3.5 Mbps bitrate. On the other hand, the bitrate of 2D pose detection 
results is around 64 Kbps when considering 25 keypoints of xy 2D coordinates (16 Bytes) with 
20 FPS.  

In this system, the edge devices are connected to an RGB camera from which the images 
are read. In addition, the central server and all the edge devices are connected to the same 
Ethernet network via an IP switch for data communication. All edge devices use the same 
coordinated universal time (UTC) using the network time protocol (NTP), an application 
protocol for clock synchronization of the host systems in Ethernet networks. Additionally, we 
consider the on-device AI boards, such as the Google Coral Dev board or Nvidia Jetson TX2, 
as edge devices to detect 2D human poses using the CNN model. The edge devices read an 
image, detect 2D human poses in real-time, and transmit the detected 2D poses and the 
timestamp based on UTC to a central server via Ethernet. Subsequently, the central server uses 
the received 2D human poses from multiple edge devices to reconstruct a 3D human pose 
using a geometrical triangulation technique, such as the DLT. 
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Fig. 1. System architecture for the proposed 3D human pose estimation framework. 

 
Fig. 2 shows a block diagram of the proposed system. Each edge device independently 

detects the 2D human pose from an image [30] and sends it to the central server. 𝕩𝕩n denotes 
the 2D coordinates {un, vn} with the confidence score {cn} from nth camera. The ith edge device 
transmits 2D coordinates 𝕩𝕩i and the timestamp ti to the central server. The central server makes 
a group {𝕩𝕩1′ , …, 𝕩𝕩𝑚𝑚′ }of 2D coordinates that are detected at approximately the same time by 
comparing the timestamps. Finally, the central server reconstructs a 3D human pose using the 
derived 2D human pose group [29, 31]. 𝕏𝕏 denotes the 3D world coordinates {xw, yw, zw} with 
confidence score {cw}. 
 

 
Fig. 2. Block diagram of the proposed 3D human pose estimation framework. 

4. Proposed Framework 

4.1 2D Human Pose Detection 
First, the 2D human poses need to be detected before a 3D human pose is reconstructed. 2D 
human pose detection involves predicting the locations of individual joints of a person from 
an image. With the recent developments in CNN architectures, research in 2D human pose 
estimation has achieved significant progress in terms of performance and accuracy. We adopt 
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pose proposal networks to infer the 2D human poses in the edge devices, such as on-device 
boards [30]. Pose proposal networks detect an unknown number of 2D poses in real time. 

The results of the 2D human pose detection that comprises 25 keypoints, including the nose, 
neck, elbows, wrists, and knees, are shown in Fig. 3 (a). The results of the simultaneously 
detected 2D human poses from four edge devices are shown in Fig. 3 (b). To detect moving 
objects in any viewpoint, and also avoid the occlusion problem, multiple viewpoints should 
be placed variously. For instance, Fig 3 (b) shows the four corner viewpoints. As mentioned 
earlier, each edge device detects the 2D human pose and transmits the detected pose, instead 
of the raw RGB image, to a central server. For a better understanding, the result of each 2D 
human pose detection is overlaid on each RGB image in Fig. 3 (b). During the 2D human pose 
detection, n edge devices simultaneously detect a 2D human pose. Subsequently, the ith edge 
device detects the 2D human pose 𝕩𝕩i that comprises xy 2D coordinates of the 25 keypoints, 
and transmits the result along with the UTC timestamp ti to the central server. The performance 
of each edge device, while detecting a 2D human pose, continuously varies depending on the 
remaining computational resources of the device. 

 

 
Fig. 3. (a) 2D human pose keypoint format and (b) 2D human pose detection results from four 

viewpoints. 

4.2 Time Synchronization 
After 2D human pose detection, the 2D human poses need to be synchronized based on the 
timestamps. In the distributed system, the received 2D human poses have a time difference 
because of the continuous variation in the performance of the edge device. If the time 
difference between the detected 2D human poses is significant, the estimated 3D human pose 
could be noisy and inaccurate. In this study, we propose a time-synchronization algorithm to 
improve the accuracy of 3D human reconstruction. We consider a data frame that includes the 
time and 2D poses for time synchronization. Fig. 4 shows the proposed data frame for time 
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synchronization. The central server divides the time of the 2D poses in the data frame into 
discrete intervals, ∆t, called slots. The central server uses the data frame to verify whether each 
2D pose was successfully received within a time slot. 

 
Fig. 4. Proposed time-synchronization data frame. 

 
The time-synchronization algorithm is shown in Algorithm 1, where 𝕩𝕩={𝕩𝕩1,…,𝕩𝕩n} denotes 

the set of the received 2D human poses, T={t1,…,tn} denotes the set of timestamps from n 
cameras, and S={𝕩𝕩1′ , …, 𝕩𝕩𝑚𝑚′ } denotes the set of time-synchronized 2D human poses across m 
multiple views. The algorithm takes input values 𝕩𝕩 and T and produces an output S for each 
set of inputs. The central server executes this algorithm in every time slot. 

In Algorithm 1, the procedure is divided into three cases: ti ≤ tstart, ti > tend, and tstart < ti ≤ 
tend, where ti is the timestamp of the 𝕩𝕩i 
 If the input timestamp is earlier than tstart (ti ≤ tstart), the central server considers the input 

2D pose from ith edge device as outdated and clears the data. 
 If the timestamp is later than tend (ti > tend), the central server considers the input 2D pose 

from ith edge device as an earlier pose and pushes the data into the buffer Q. 
  If neither of the first two cases are true, then the central server considers the input 2D 

pose as appropriate (tstart < ti ≤ tend) and appends the 2D pose 𝕩𝕩i to S, the set of 2D poses 
to be used for 3D human pose reconstruction. 

Additionally, in anticipation of a poor case where the minimum number of 2D poses for 
3D human pose reconstruction is not received, nmin, we have programmed the algorithm to 
check whether the number of the time-synchronized 2D human poses in set S is greater than 
nmin. If not, the central server uses the data stored earlier in the buffer Q to meet the 
triangulation requirement of the minimum number of poses. 
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Algorithm 1: Time-Synchronization Algorithm 
Input: Dataset 𝕩𝕩 and T 
Output: Dataset S = {𝕩𝕩𝟏𝟏′ , …, 𝕩𝕩𝒎𝒎′ } 
(1)     Initialize queue Q and S 
(2)     Insert ∀{𝕩𝕩𝑖𝑖, 𝑡𝑡𝑖𝑖} ∈ 𝕩𝕩,𝑻𝑻 into Q 
(3)     while 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 < 𝑡𝑡 ≤ 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒: 
(4)         for each {𝕩𝕩i, ti} in Q: 
(5)             pop {𝕩𝕩i, ti} from Q 
(6)             if 𝑡𝑡𝑖𝑖 ≤  𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 then      (In case 2D pose 𝕩𝕩𝑖𝑖 is outdated, clear the data)  
(7)                 continue 
(8)             else if 𝑡𝑡𝑖𝑖 >  𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 then (In case 2D pose 𝕩𝕩𝑖𝑖 is early, reserve the data) 
(9)                 push{𝕩𝕩i, ti} into Q 
(10)         else                             (Otherwise, 2D pose 𝕩𝕩𝑖𝑖 is appropriate, use the data) 
(11)            push 𝕩𝕩i into S 
(12)         end 
(13)     end 
(14)     for each {𝕩𝕩i, ti} in Q: 
(15)         pop {𝕩𝕩i, ti} from Q 
(16)         if n(S) < nmin  then   (If the number of 2D poses is insufficient, use the early 

data) 
(17)             push 𝕩𝕩i into S 
(18)             push{𝕩𝕩i, ti} into Q 
(19)         else 
(20)             break 
(21)         end 
(22)     end 

 

4.3 3D Pose Reconstruction 
The final stage in the development of the proposed framework is 3D pose reconstruction. 

A 3D pose is reconstructed using a geometrical triangulation technique with the set of 2D 
human poses, 𝑆𝑆 = {𝕩𝕩𝑖𝑖′}𝑖𝑖=1𝑚𝑚 , which is the output of the previous time-synchronization algorithm. 

As the previous 3D pose estimation researches [29, 31], we reconstruct a 3D human pose 
𝕏𝕏 = {xw, yw, zw} using the DLT method with the following procedures. Assuming this as a 
pinhole camera model, we can derive 𝕩𝕩𝑖𝑖′ = 𝑘𝑘𝑃𝑃𝑖𝑖𝕏𝕏 where 𝕩𝕩𝑖𝑖′ is the set of 2D keypoints of the 
human pose, 𝑘𝑘 is an unknown scale factor, and 𝑃𝑃𝑖𝑖  is a projection matrix of the ith camera. 
Therefore, the cross product of the two vectors is zero (, 𝕩𝕩𝑖𝑖′ × 𝑃𝑃𝑖𝑖𝕏𝕏 = 0) because 𝕩𝕩𝑖𝑖′ and 𝑃𝑃𝑖𝑖𝕏𝕏 
have the same direction, except for the scale factor 𝑘𝑘. On expanding on the equations, we 
derive (1). 

 

�
𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖
1
� × �

𝑝𝑝𝑖𝑖1Τ 𝕏𝕏
𝑝𝑝𝑖𝑖2Τ 𝕏𝕏
𝑝𝑝𝑖𝑖3Τ 𝕏𝕏

� = �
𝑣𝑣𝑖𝑖𝑝𝑝𝑖𝑖3Τ 𝕏𝕏 − 𝑝𝑝𝑖𝑖2Τ 𝕏𝕏 
𝑝𝑝𝑖𝑖1Τ 𝕏𝕏 − 𝑢𝑢𝑖𝑖𝑝𝑝𝑖𝑖3Τ 𝕏𝕏
𝑢𝑢𝑖𝑖𝑝𝑝𝑖𝑖2Τ 𝕏𝕏 − 𝑣𝑣𝑖𝑖𝑝𝑝𝑖𝑖1Τ 𝕏𝕏

� = 0, (1) 
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where 𝑝𝑝𝑖𝑖𝑖𝑖Τ  denotes the jth row of the projection matrix of the ith camera. Further, using (1), 
we obtain linear equations (2) and (3). 

 

�
𝑣𝑣𝑖𝑖𝑝𝑝𝑖𝑖3Τ − 𝑝𝑝𝑖𝑖2Τ

𝑝𝑝𝑖𝑖1Τ − 𝑢𝑢𝑖𝑖𝑝𝑝𝑖𝑖3Τ
� × 𝕏𝕏 = �00� (2) 

𝐴𝐴𝑖𝑖𝕏𝕏 = 0 (3) 

By associating 𝐴𝐴𝑖𝑖𝕏𝕏 = 0 with m views, we represent it as a homogeneous linear system. 
Therefore, the approximation of 𝕏𝕏 is the last column of V corresponding to the smallest 
singular value of 𝑈𝑈∑𝑉𝑉Τ,which is the result computed using singular value decomposition 
(SVD) [29, 31]. The resulting 3D human pose estimation using the DLT method is shown in 
Fig. 5. 

 
Fig. 5. 3D human pose estimation from multiple 2D human poses using the DLT method. 

4.4 Weighted Moving Average 
Once the 3D human pose is estimated, a weighted moving average filter can be adapted to 
smooth the 3D human pose and reduce noise. 3D human poses are sequentially stored into a 
frame buffer, and a weighted moving average filter is subsequently applied. Further, to add 
weight to the 3D human pose with a higher confidence score, the confidence score cw is used 
as the weight of the moving average filter. 

5. Experiment Results 

5.1 Performance Metrics 
To evaluate the performance of the proposed time-synchronization algorithm, we used the 
percentage of detected joints (PDJ) as an evaluation metric [3]. The PDJ is a simple and widely 
accepted evaluation metric for the accuracy of human pose estimation. The metric shows a 
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ratio of the correctly predicted keypoint to the ground-truth keypoint. As the accuracy of the 
prediction increases, the PDJ approaches 100%. A joint is considered as detected when the 
distance between the predicted and the ground-truth keypoints is within a certain fraction of 
the torso diameter. The PDJ metric is calculated as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝛼𝛼 (%) =  ∑ 𝐵𝐵(𝑒𝑒𝑖𝑖<𝛼𝛼𝛼𝛼)𝑘𝑘
𝑖𝑖=1

𝑘𝑘
 × 100, (4) 

where 𝑑𝑑𝑖𝑖 is the Euclidean distance between the ith predicted and ground-truth keypoints, D 
is the Euclidean distance of the 3D bounding box of the human body from the edge devices, 
and 𝛼𝛼 is a certain distance threshold to verify the accuracy of the estimation. In addition, 𝑘𝑘 is 
the number of keypoints on the human body, and B is a boolean function that returns one if 
the condition is true and zero if it is false. 

5.2 Simulation Results 
We evaluated the performanceof the proposed framework, in terms of the PDJ,  for 3D human 
pose estimation. The following dataset was used to compare the detected keypoints with the 
ground-truth keypoints [32]. It was a dataset consisting of 2D human poses from 23 calibrated 
cameras of a person moving in an indoor environment. The dataset had 18,400 frames, with 
each calibrated camera capturing 800 frames. We assumed that the dataset was time-
synchronized because it was extracted from videos recorded at the same time. In this 
simulation environment, multiple asynchronous threads read the 2D human pose data captured 
by different cameras and transmitted the data at time intervals with a random time difference 
σ, rand(-σ,σ). Subsequently, the main thread collected the 2D human poses and estimated 3D 
human poses. The values of the simulation parameters were considered as follows. The total 
number of the RGB camera and edge devices was 8 (n = 8), the minimum number of 2D 
keypoints for DLT was 3 (nmin = 3), and the time interval of the time-synchronization data 
frame was 20 ms (∆t = 20 ms). In addition, the edge devices were assumed to transmit 2D 
keypoints at intervals of 20 ms and with a random σ. 
 

 
Fig. 6. PDJ with a distance threshold of 0.1. 
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Fig. 6 shows the PDJ with a distance threshold of 0.1 based on σ. As the value of σ 
increased, the PDJ decreased because of the reduction in accuracy of 3D human pose 
estimation, and the mismatched 2D human poses increased in the time-synchronization 
algorithm. To evaluate the performance improvement of using the time-synchronization 
algorithm, we compared the proposed algorithm with the typical first-in, first-out (FIFO) 
algorithm that handles data in a sequence without any time synchronization. When σ was 15 
ms, the PDJ0.1 derived using the time-synchronization was approximately 5% higher than that 
derived using the FIFO algorithm. The proposed time-synchronization algorithm (T-Sync) 
exhibited a higher PDJ than the FIFO algorithm because the proposed algorithm selects only 
the 2D human poses in the same time domain to increase the estimation accuracy. 
 

 
Fig. 7. PDJ with a distance threshold of 0.05. 

 
Fig. 7 shows the PDJ with a distance threshold of 0.05. The value of the PDJ0.05 was lesser 

than PDJ0.1 because the criterion to evaluate the accuracy of the estimation became much 
stringent as the distance threshold decreased. In the proposed framework, when σ was 6 ms 
and 15 ms, the PDJ0.05 was approximately 2.5% and 11.7% higher, respectively, compared 
with that of the FIFO algorithm. The numerical results of the simulation are summarized in 
Table 1. 

 
Table 1. The PDJ with distance thresholds 0.1 and 0.05 

Time difference σ 
(ms) 

PDJ0.1 (%) PDJ0.05 (%) 
FIFO T-Sync FIFO T-Sync 

3 92.0 92.8 91.5 92.4 
6 91.7 92.9 89.9 92.4 
9 90.7 92.6 88.5 91.7 

12 90.2 93.0 83.2 91.7 
15 86.7 91.7 76.8 88.5 
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The performance improvement using the proposed T-Sync algorithm was validated by 
the 3D pose estimation results of FIFO and T-Sync, as shown in Fig. 8. The first row shows 
the result where σ is 0 ms, with no time difference between the edge devices. When we 
increased σ to 15 ms, FIFO exhibited an inaccurate estimation of the 3D pose because the 2D 
human poses were mismatched. As shown in red circles in Fig. 8 (a), some of the joint 
locations were poorly reconstructed compared with the reconstructed joint locations (Table 1) 
when σ was 0 ms. In contrast, even after we increased σ to 15 ms, the proposed T-Sync 
algorithm exhibited a more accurate estimation of the 3D pose as shown in Fig. 8 (b). 

 

 
Fig. 8. 3D pose estimation results of FIFO and T-Sync with σ as 15 ms. 

 

5.3 Prototyping Results 
In addition to deriving the simulation result, we implemented a prototype to demonstrate that 
the proposed framework could successfully estimate 3D human pose in real time. We 
implemented and installed the prototype that comprises a single central server and four edge 
devices in an empty space, as shown in Fig. 9. We used Sterolabs Zed 2i RGB camera and 
Nvidia Jetson TX2 as the edge device to read an RGB image and detect a 2D human pose, 
respectively. In addition, we used an ASUS laptop with Intel i9 and RTX3080 GPU as the 
central server. Further, all the devices were connected to an iptime A3008 IP switch for data 
communication. Table 2 summarizes the hardware specifications of the implemented 
prototype. 
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Fig. 9.  Prototype that comprises a single central server and 4 edge devices. 

 
Table 2. Hardware specification of the implemented prototype 

Name Specification Number of 
machines 

RGB Camera Stereolabs Zed 2i (720p/60FPS) 4 
Edge device Jetson TX2, NVIDIA Denver 2 CPU, Pascal GPU, 8GB RAM 4 

IP Switch IPtime A3008 2Gbps 1 
Central Server Intel i9 2.5GHz CPU, RTX3080 GPU, 32GB RAM 1 
 
Similar to the simulation environment, we set ∆t as 20 ms, and nmin as 3. When we executed 

the prototype, each edge device detected a 2D human pose with the images captured 
atapproximately 15–20 frames per second (FPS). The FPS of each edge device continuously 
varied depending on the remaining computational resources of the device. For the quantitative 
evaluation, we verified that the prototype captured a static 20 FPS when we set ∆t as 20 ms. 
For the qualitative performance evaluation, we used a real-time 3D visualizer to analyze the 
estimated 3D human pose. The 3D visualizer showed the results of 2D human detection and 
3D human reconstruction in real time. The prototyping results obtained by the real-time 3D 
visualizer are shown in Fig. 10. The first row (a) shows a person with different poses. The 
second row (b) shows the results of 2D pose detection from the edge devices, and the third 
row (c) shows the results of 3D pose estimation as 2D projections of the estimated 3D 
skeletons representing the joints and bone locations. The last row (d) shows a 3D character 
duplicating the different poses of the person based on the estimated 3D poses. To ensure that 
the 3D character had the same pose as the person, we mapped each result of the respective 3D 
pose estimation to a 3D character model. Using the real-time 3D visualizer, we verified that 
the proposed framework could estimate 3D human poses in real time across multiple 
asynchronous views. 
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Fig. 10. Prototyping results obtained by the real-time 3D visualizer. 

6. Conclusion 
In this study, we propose a distributed framework for real-time 3D pose estimation based 

on asynchronous multiviews. In the earlier multi-view 3D human pose estimation system 
which has a single host server, the system may lack in computational resources, and its 
multimedia traffic becomes overloaded. To overcome this challenge, we propose a distributed 
framework that comprises a single central server and multiple edge devices. The edge devices 
detect 2D human poses and transmit them, instead of RGB images, with timestamps to a 
central server. In addition, to solve the issue of inaccuracy owing to asynchronous cameras in 
the distributed system, we propose a time-synchronization algorithm in which the central 
server creates a set of keypoints of the 2D poses detected at approximately the same time. The 
simulation results demonstrated that, when σ was 6 ms and 15 ms, the PDJ0.05 of the proposed 
framework was approximately 2.5% and 11.7% higher, respectively, compared with that of 
the FIFO algorithm. In addition, we implemented and installed a prototype that comprises a 
single central server and four edge devices. The qualitative performance evaluation verified 
that the proposed framework could estimate a 3D human pose in real time using multiple 
asynchronous views. 
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