• Title/Summary/Keyword: human platelet

Search Result 287, Processing Time 0.023 seconds

Analysis of the Potent Platelet Glycoprotein IIb-IIIa Antagonist from Natural Sources

  • Kang, In-Cheol;Kim, Doo-Sik
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.515-518
    • /
    • 1998
  • Adhesive interaction of the platelet glycoprotien IIb-IIIa (GP IIb-IIIa) with a plasma protein, such as fibrinogen, plays an important role in thrombosis and hemostasis. The specific sequence Arg-Gly-Asp (RGD) is critical for the binding of fibrinogen to platelet. To examine and characterize the GP IIb-IIIa antagonist from natural sources, we have developed a simple enzyme-linked immunosorbant assay (ELISA) system. The GP IIb-IIIa complex was purified to homogeneity from platelet Iysates by the combination of two affinity chromatographic methods using the synthetic RGD peptide (GRGDSPK)-immobilized Sepharose and wheat germ lectin-Sepharose. The synthetic peptide GRGDSP inhibits GP IIb-IIIa binding to immobilized fibrinogen with an $IC_{50}$ of $1.5\;{\mu}M$. Venoms of three different snake species and a Korean scolopendra extract have strong antagonistic activities for the binding of human fibrinogen to the platelet GP IIb-IIIa complex. The $IC_{50}$ values of the snake venom s and scolopendra were in the range of $5.5\;{\mu}g$ to $60\;{\mu}g$. These results provide meaningful information for developing antiplatelet agents.

  • PDF

The Inhibitory Effects of Glycyrrhiza uralensis on human Platelet Aggregation and Thrombus Formation

  • Seung Na Ko;Ji Won Son;Gyu Ri Kim;Min Seon Kim;Yea Jin Lee;Seung Ju Kim;Ji Hyeon Shin;Da In Jo;Woo Young Bok;Hye Gyo Oh;Hyuk-Woo Kwon
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.242-248
    • /
    • 2023
  • Platelets are activated at the sites of vascular injury by a number of molecules, including adenosine diphosphate, collagen and thrombin. The full platelet aggregation is absolutely essential for the normal hemostasis. Glycyrrhiza glabra is a well-known medicinal herb that grows in various parts of the world and is known to have various effects such as antioxidant, anti-inflammatory, anti-atherogenic, anti-osteoporotic and skin-whitening. However, the platelet inhibitory effect of Glycyrrhiza glabra extract (GGE) has not been identified. In this study, we investigated if GGE inhibited platelet aggregation. We observed that GGE inhibited collagen-induced platelet aggregation, Ca2+ mobilization, and thromboxane A2 generation. In addition, GGE suppressed phosphorylation of phosphatidylinositol-3 kinase (PI3K), Akt and elevated phosphorylation of inositol 1,4,5-trisphosphate receptor (IP3R), vasodilator stimulated phosphoprotein (VASP). Taken together, GGE showed strong antiplatelet effects and may be used to block platelet-mediated cardiovascular diseases.

Cudrania Tricuspidata root extract (CTE) has an anti-platelet effect via cGMP-dependent VASP phosphorylation in human platelets (꾸지뽕나무 뿌리 추출물의 cGMP에 의한 VASP 인산화 기전을 통한 항혈소판 효과)

  • Ro, Ju-Ye;Cho, Hyun-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.298-305
    • /
    • 2019
  • Cudrania tricuspidata has been reported to have many biological activities, including anti-inflammatory, anti-cancer, and antioxidant properties. However, the effects of C. tricuspidata root extract (CTE) on human platelet aggregation induced by collagen as well as the signaling pathways involved remain unknown. In the present study, we investigated the effect of CTE on human platelets. CTE inhibited platelet aggregation via down-regulation of thromboxane A2 (TXA2) by blocking cyclooxygenase-1 (COX-1) activity and intracellular Ca2+ mobilization in collagen-induced platelets. CTE also reduced the phosphorylation of phospholipase C (PLC) γ2 and syk. CTE regulated platelet aggregation via cyclic guanosine monophosphate (cGMP)-dependent phosphorylation of vasodilator-stimulated phosphoprotein (VASP) Ser239. In addition, administration of CTE (50 and 100 mg/kg) significantly reduced hyper-aggregated platelet aggregation by collagen (5 ㎍/mL) without hepatotoxicity in HFD (high fat diet)-fed rats. Taken together, these results suggest that CTE has anti-platelet effects both in vitro and in vivo. Therefore, CTE may be an effective therapeutic and preventive agent for cardiovascular disease, and is a safe and natural product.

Inhibitory Effect of Ginkgolide B on Platelet Aggregation in a cAMP- and cGMP-dependent Manner by Activated MMP-9

  • Cho, Hyun-Jeong;Nam, Kyung-Soo
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.678-683
    • /
    • 2007
  • Extracts from the leaves of the Ginkgo biloba are becoming increasingly popular as a treatment that is claimed to reduce atherosclerosis, coronary artery disease, and thrombosis. In this study, the effect of ginkgolide B (GB) from Ginkgo biloba leaves in collagen (10 ${\mu}g/ml$)-stimulated platelet aggregation was investigated. It has been known that human platelets release matrix metallo-proteinase-9 (MMP-9), and that it significantly inhibited platelet aggregation stimulated by collagen. Zymographic analysis confirmed that pro-MMP-9 (92-kDa) was activated by GB to form an MMP-9 (86-kDa) on gelatinolytic activities. And then, activated MMP-9 by GB dose-dependently inhibited platelet aggregation, intracellular $Ca^{2+}$ mobilization, and thromboxane $A_2$ ($TXA_2$) formation in collagen-stimulated platelets. Activated MMP-9 by GB directly affects down-regulations of cyclooxygenase-1 (COX-1) or $TXA_2$ synthase in a cell free system. In addition, activated MMP-9 significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have the anti-platelet function in resting and collagen-stimulated platelets. Therefore, we suggest that activated MMP-9 by GB may increase the intracellular cAMP and cGMP production, inhibit the intracellular $Ca^{2+}$ mobilization and $TXA_2$ production, thereby leading to inhibition of platelet aggregation. These results strongly indicate that activated MMP-9 is a potent inhibitor of collagen-stimulated platelet aggregation. It may act a crucial role as a negative regulator during platelet activation.

BMS-191095, a Cardioselective Mitochondrial $K_{ATP}$ Opener, Inhibits Human Platelet Aggregation by Opening Mitochondrial $K_{ATP}$ Channels

  • Cho Mi-Ra;Park Jung-Wook;Jung In-Sang;Yi Kyu-Yang;Yoo Sung-Eun;Chung Hun-Jong;Yun Yeo-Pyo;Kwon Suk-Hyung;Shin Hwa-Sup
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.61-67
    • /
    • 2005
  • We evaluated the antiplatelet effects of two classes of ATP-sensitive potassium channel openers $(K_{ATP}\;openers)$ on washed human platelets, and the study's emphasis was on the role of mitochondrial $K_{ATP}$ in platelet aggregation. Collagen-induced platelet aggregation was inhibited in a dose dependent manner by lemakalim and SKP-450, which are potent cardio-nonselective $K_{ATP}$ openers, and also by cardioselective BMS-180448 and BMS-191095 $(IC_{50}\;:\;1,130,\;>\;1,500,\;305.3\;and\;63.9\;{\mu}M,\;respectively)$, but a significantly greater potency was noted for the cardioselective $K_{ATP}$ openers. The latter two $K_{ATP}$ openers also inhibited platelet aggregation induced by thrombin, another important blood-borne platelet activator, with similar rank order of potency $(IC_{50}\;:\;498.0\;and\;104.8{\mu}M\; for\;BMS-180448\;and\;BMS-191095,\;respectively)$. The inhibitory effects of BMS-191095 on collagen-induced platelet aggregation were significantly blocked by a 30-min pretreatment of platelets with glyburide $(1{\mu}M)$ or sodium 5-hydroxyde­canoate$(5-HD,\;100{\mu}M)$, a nonselective and selective mitochondrial $K_{ATP}$ antagonist, respectively, at similar magnitudes; this indicates the role of mitochondrial $K_{ATP}$ in the antiplatelet activity of BMS-191095. However, glyburide and 5-HD had no effect when they were added to the platelet cuvette immediately prior to the addition of BMS-191095. These findings indicate that cardioselective mitochondrial $K_{ATP}$ openers like BMS-191095 are able to exert cardioprotective effects in cardiac ischemia/reperfusion injury via dual mechanisms directed at the inhibition of platelet aggregation and the protection of cardiomyocytes, and both these mechanisms are mediated by mitochondrial$K_{ATP}$.

Decreased Expression of Phospholipase C-$\beta$2 in Human Platelets with Impaired Function

  • Lee, Sang-Bong;A. Koneti Rao;Lee, Kweon-Haeng;Xu Yang;Bae, Yun-Soo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.75-84
    • /
    • 1996
  • Platelets from a patient with a mild inherited bleeding disorder and abnormal platelet aggregation and secretion show reduced generation of inositol 1,4,5-trisphosphate (IP$_3$), mobilization of intracellular Ca$\^$2+/, and phosphorylation of pleckstrin in response to several G protein mediated agonists, suggesting a possible defect at the level of phospholipase C (PLC) activation. A procedure was developed that allows quantitation of platelet PLC isozymes. After fractionation of platelet extracts by high-performance liquid chromatography, seven, out often known PLC isoforms were detected by immunoblot analysis. The amount of these isoforms in normal platelets decreased in the order PLC-${\gamma}$2 > PLC-${\beta}$2 > PLC-${\beta}$3 > PLC-${\beta}$l > PLC-${\gamma}$ > PLC-$\delta$1 > PLC-${\beta}$4. Compared with normal platelets, platelets from the patient contained approximately one-third the amount of PLC-${\beta}$2, whereas PLC-${\beta}$4 was increased threefold. These results suggest that the impaired platelet function in the patient in response to multiple G protein mediated agonists is attributable to a deficiency of PLC-${\beta}$2. They document for the first time a specific PLC isozyme deficiency in human platelets and provide an unique opportunity to understand the role of different PLC isozymes in normal platelet function.

  • PDF

Anti-thrombotic effects of ginsenoside Rk3 by regulating cAMP and PI3K/MAPK pathway on human platelets

  • Hyuk-Woo Kwon ;Jung-Hae Shin ;Man Hee Rhee ;Chang-Eun Park ;Dong-Ha Lee
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.706-713
    • /
    • 2023
  • Background and objective: The ability to inhibit aggregation has been demonstrated with synthetically derived ginsenoside compounds G-Rp (1, 3, and 4) and ginsenosides naturally found in Panax ginseng 20(S)-Rg3, Rg6, F4, and Ro. Among these compounds, Rk3 (G-Rk3) from Panax ginseng needs to be further explored in order to reveal the mechanisms of action during inhibition. Methodology: Our study focused to investigate the action of G-Rk3 on agonist-stimulated human platelet aggregation, inhibition of platelet signaling molecules such as fibrinogen binding with integrin αIIbβ3 using flow cytometry, intracellular calcium mobilization, dense granule secretion, and thromboxane B2 secretion. In addition, we checked the regulation of phosphorylation on PI3K/MAPK pathway, and thrombin-induced clot retraction was also observed in platelets rich plasma. Key Results: G-Rk3 significantly increased amounts of cyclic adenosine monophosphate (cAMP) and led to significant phosphorylation of cAMP-dependent kinase substrates vasodilator-stimulated phosphoprotein (VASP) and inositol 1,4,5-trisphosphate receptor (IP3R). In the presence of G-Rk3, dense tubular system Ca2+ was inhibited, and platelet activity was lowered by inactivating the integrin αIIb/β3 and reducing the binding of fibrinogen. Furthermore, the effect of G-Rk3 extended to the inhibition of MAPK and PI3K/Akt phosphorylation resulting in the reduced secretion of intracellular granules and reduced production of TXA2. Lastly, G-Rk3 inhibited platelet aggregation and thrombus formation via fibrin clot. Conclusions and implications: These results suggest that when dealing with cardiovascular diseases brought upon by faulty aggregation among platelets or through the formation of a thrombus, the G-Rk3 compound can play a role as an effective prophylactic or therapeutic agent.

Inhibitory effects of isoscopoletin on thrombus formation via regulation of cyclic nucleotides in collagen-induced platelets

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.235-241
    • /
    • 2020
  • An essential component of the hemostatic process during vascular damage is platelet activation. However, many cardiovascular diseases, such as atherosclerosis, thrombosis, and myocardial infarction, can develop due to excessive platelet activation. Isoscopoletin, found primarily in plant roots of the genus Artemisia or Scopolia, has been studied to demonstrate potential pharmacological effects on Alzheimer's disease and anticancer, but its mechanisms and role in relation to thrombus formation and platelet aggregation have not yet been discovered. This research investigated the effect of isoscopoletin on collagen-induced human platelet activation. As a result, isoscopoletin strongly increased cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels in a concentration-dependent manner. In addition, isoscopoletin greatly phosphorylated inositol 1,4,5-triphosphate receptor (IP3R) and vasodilator-stimulated phosphoprotein (VASP), known substrates of cAMP-dependent kinase and cGMP dependent kinase. Phosphorylation of IP3R by isoscopoletin induced Ca2+ inhibition from the dense tubular system Ca2+ channels, and VASP phosphorylation was involved in fibrinogen binding inhibition by inactivating αIIb/β3 in the platelet membrane. Isoscopoletin finally reduced thrombin-induced fibrin clot production and finally reduced thrombus formation. Therefore, this research suggests that isoscopoletin has strong antiplatelet effects and is likely to be helpful for thrombotic diseases involving platelets by acting as a prophylactic and therapeutic agent.

Inhibition of collagen-induced platelet aggregation by Sanggenon N via the Ca2+ signaling pathway

  • Hyuk-Woo Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.463-469
    • /
    • 2022
  • Cudrania tricuspidata (C. tricuspidata), a medicinal plant widely employed throughout Asia in ethnomedicine, has various bioactive properties, including antidiabetic, antiobesity, antitumor, and anti-inflammatory activities. In addition, the C. tricuspidata root extract reportedly inhibits platelet aggregation. Therefore, we focused on the active substances present in the C. tricuspidata extract. Sanggenon N (SN) is a flavonoid found in the root bark of C. tricuspidata. In the present study, we examined the inhibitory effects of SN on platelet aggregation, phosphoproteins, thromboxane A2 generation, and integrin αIIbβ3 activity. SN inhibited collagen-induced human platelet aggregation in a dose-dependent manner without cytotoxicity. Furthermore, SN suppressed Ca2+ mobilization and influx through associated signaling molecules, such as inositol 1, 4, 5-triphosphate receptor I (Ser1756), and extracellular signal-regulated kinase. In addition, SN inhibited thromboxane A2 generation and associated signaling molecules, including cytosolic phospholipase A2 and mitogen-activated protein kinase p38. Finally, SN could inhibit integrin (αIIb/β3) activity by regulating vasodilator-stimulated phosphoprotein and Akt. Collectively, SN possesses potent antiplatelet effects and is a potential therapeutic drug candidate to prevent platelet-related thrombosis and cardiovascular disease.

Anti-platelet effects of Artesunate through Regulation of Cyclic Nucleotide on Collagen-induced Human Platelets

  • Dong-Ha Lee
    • Biomedical Science Letters
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • Discovery of new substance that can regulate platelet aggregation or suppress aggregation will aid in the prevention and treatment of cardiovascular diseases. Artesunate is a compound from plant roots of Artemisia or Scopolia, and its effects have shown to be promising in areas of anticancer and Alzheimer's disease. However, the role and mechanisms by which artesunate affects the aggregation of platelets, and the formation of a thrombus are currently not understood. This study examined the ways artesunate affects platelets activation and thrombus formation induced by collagen. As a result, cAMP and cGMP production were increased significantly by artesunate relative to the doses, as well as phosphorylated VASP and IP3R, substrates to cAMP-dependent kinase and cGMP-dependent kinase, in a significant manner. The Ca2+ normally mobilized from the dense tubular system was inhibited due to IP3R, phosphorylation from artesunate, and phosphorylated VASP aided in inhibiting platelet activity via αIIb/β3 platelet membrane inactivation and inhibiting fibrinogen binding. Finally, artesunate inhibited thrombin-induced thrombus formation. Therefore, we suggest that artesunate has importance with cardiovascular diseases stemming from the abnormal platelets activation and thrombus formation by acting as an effective prophylactic and therapeutic agent.