DOI QR코드

DOI QR Code

Inhibition of collagen-induced platelet aggregation by Sanggenon N via the Ca2+ signaling pathway

  • Hyuk-Woo, Kwon (Department of Biomedical Laboratory Science and Microbiological Resource Research Institute, Far East University)
  • Received : 2022.11.25
  • Accepted : 2022.12.08
  • Published : 2022.12.31

Abstract

Cudrania tricuspidata (C. tricuspidata), a medicinal plant widely employed throughout Asia in ethnomedicine, has various bioactive properties, including antidiabetic, antiobesity, antitumor, and anti-inflammatory activities. In addition, the C. tricuspidata root extract reportedly inhibits platelet aggregation. Therefore, we focused on the active substances present in the C. tricuspidata extract. Sanggenon N (SN) is a flavonoid found in the root bark of C. tricuspidata. In the present study, we examined the inhibitory effects of SN on platelet aggregation, phosphoproteins, thromboxane A2 generation, and integrin αIIbβ3 activity. SN inhibited collagen-induced human platelet aggregation in a dose-dependent manner without cytotoxicity. Furthermore, SN suppressed Ca2+ mobilization and influx through associated signaling molecules, such as inositol 1, 4, 5-triphosphate receptor I (Ser1756), and extracellular signal-regulated kinase. In addition, SN inhibited thromboxane A2 generation and associated signaling molecules, including cytosolic phospholipase A2 and mitogen-activated protein kinase p38. Finally, SN could inhibit integrin (αIIb/β3) activity by regulating vasodilator-stimulated phosphoprotein and Akt. Collectively, SN possesses potent antiplatelet effects and is a potential therapeutic drug candidate to prevent platelet-related thrombosis and cardiovascular disease.

Keywords

Acknowledgement

This work was supported by a 2021 Far East University Research Grant (FEU2021S01).

References

  1. Pagidipati NJ, Gaziano TA (2013) Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation 127: 749-756. doi: 10.1161/CIRCULATIONAHA.112.128413 
  2. Zhao D (2021) Epidemiological features of cardiovascular disease in Asia. JACC: Asia 1: 1-13  https://doi.org/10.1016/j.jacasi.2021.04.007
  3. Lee HH, Cho SMJ, Lee H, Baek J, Bae JH, Chung WJ, Kim HC (202) Korea heart disease fact sheet 2020: analysis of nationwide data. Korean Circ J 51: 495-503. doi: 10.4070/kcj.2021.0097 
  4. Jackson SP (2011) Arterial thrombosis-insidious, unpredictable and deadly. Nat Med 17: 1423-1436. doi: doi.org/10.1038/nm.2515 
  5. Farndale RW (2006) Collagen-induced platelet activation. Blood Cell Mol Dis 36: 162-165. doi: 10.1016/j.bcmd.2005.12.016 
  6. Rosado JA, Sage SO (2022) The ERK cascade, a new pathway involved in the activation of store-mediated calcium entry in human platelets. Trends Cardiovasc Med 12: 229-234. doi: 10.1016/S1050-1738(02)00161-5 
  7. Needleman P, Moncada S, Bunting S, Vane JR, Hamberg M, Samuelsson B (1976) Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides. Nature 261: 558-560. doi: 10.1038/261558a0 
  8. Phillips DR, Nannizzi-Alaimo L, Prasad KS (2001) β3 tyrosine phosphorylation in αIIbβ3 (platelet membrane GP IIb-IIIa) outside-in integrin signaling. Thromb Haemost 86:246-258. doi: 10.1055/s-0037-1616222 
  9. Xin LT, Yue SJ, Fan YC, Wu JS, Yan D, Guan HS (2017) Cudrania tricuspidata: an updated review on ethnomedicine, phytochemistry and pharmacology. RSC advances 7:31807-31832. doi: 10.1039/C7RA04322H 
  10. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440-3450. doi: 10.1016/S0021-9258(19)83641-4 
  11. Schwarz UR, Walter U, Eigenthaler M (2001) Taming platelets with cyclic nucleotides. Biochem Pharmacol 62: 1153-1161. doi: 10.1016/S0006-2952(01)00760-2 
  12. Adam F, Kauskot A, Rosa JP, Bryckaert M (2008) Mitogen?activated protein kinases in hemostasis and thrombosis. J Thromb Haemost 6: 2007-2016. doi: 10.1111/j.1538-7836.2008.03169.x 
  13. Chen J, De S, Damron DS, Chen WS, Hay N, Byzova TV (2004) Impaired platelet responses to thrombin and collagen in AKT-1-deficient mice. Blood 104: 1703-1710. doi: 10.1182/blood-2003-10-3428 
  14. Valet C, Severin S, Chicanne G, Laurent PA, Gaits-Iacovoni F, Gratacap MP, Payrastre B (2016) The role of class I, II and III PI 3-kinases in platelet production and activation and their implication in thrombosis. Adv Biol Regul 61: 33-41. doi: 1 0.1016/j.jbior.2015.11.008  https://doi.org/10.1016/j.jbior.2015.11.008
  15. Smyth EM (2010) Thromboxane and the thromboxane receptor in cardiovascular disease. Clinical lipidology 5: 209-219. doi: 10.2217/clp.10.11 
  16. Kramer RM, Roberts EF, Um SL, Borsch-Haubold AG, Watson SP, Fisher MJ, Jakubowski JA (1996) p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J Biol Chem 271: 27723-27729. doi: 10.1074/jbc.271.44.27723 
  17. Nishikawa M, Tanaka T, Hidaka H (1980) Ca2+-calmodulin-dependent phosphorylation and platelet secretion. Nature 287: 863-865. doi: 10.1038/287863a0 
  18. Quinton TM, Dean WL (1992) Cyclic AMP-dependent phosphorylation of the inositol-1, 4, 5-trisphosphate receptor inhibits Ca2+ release from platelet membranes. Biochem Biophys Res Commun 184: 893-899. doi: 10.1016/0006-291X(92)90675-B 
  19. Rosado JA, Sage SO (2001) Role of the ERK pathway in the activation of store-mediated calcium entry in human platelets. J Biol Chem 276: 15659-15665. doi: 10.1074/jbc.M009218200 
  20. Kwon HW (2018) Inhibitory Effects of PD98059, SB203580, and SP600125 on α-and δ-granule Release and Intracellular Ca2+ Levels in Human Platelets. Biomed Sci Lett 24: 253-262. doi: 10.15616/BSL.2018.24.3.253 
  21. Lang F, Munzer P, Gawaz M, Borst O (2013) Regulation of STIM1/Orai1-dependent Ca2+ signalling in platelets. Thromb Haemost 110: 925-930. doi: 10.1160/TH13-02-0176 
  22. Varga-Szabo D, Braun A, Kleinschnitz C, Bender M, Pleines I, Pham M, Nieswandt B (2008) The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med 205: 1583-1591. doi: 10.1084/jem.20080302 
  23. Tomaiuolo M, Brass LF, Stalker TJ (2017) Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis. Interv Cardiol Clin 6: 1-12. doi: 10.1016/j.iccl.2016.08.001 
  24. Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8: 1227-1234. doi: 10.1038/nm1102-1227 
  25. Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, Abdelhady S, Nasrallah GK, Eid AH, Pintus G (2020) Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Front Pharmacol 11: 422. doi: 10.3389/fphar.2020.00422 
  26. Irfan M, Kim M, Rhee MH (2020) Anti-platelet role of Korean ginseng and ginsenosides in cardiovascular diseases. J ginseng res 44: 24-32. doi: 10.1016/j.jgr.2019.05.005 
  27. Ro JY, Cho HJ (2019) Cudrania Tricuspidata root extract (CTE) has an anti-platelet effect via cGMP-dependent VASP phosphorylation in human platelets. Journal of the Korea Academia-Industrial Cooperation Society 20: 298-305. doi: 10.5762/KAIS.2019.20.12.298