• Title/Summary/Keyword: human hepatocellular carcinoma

Search Result 238, Processing Time 0.024 seconds

Dendritic Cells-based Vaccine and Immune Monitoring for Hepatocellular Carcinoma

  • Lee, Dae-Heui
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.11-14
    • /
    • 2010
  • Human tumors, including those of the hepatobiliary system, express a number of specific antigens that can be recognized by T cells, and may provide potential targets for cancer immunotherapy. Dendritic cells (DCs) are rare leucocytes that are uniquely potent in their ability to capture, process and present antigens to T cells. The ability to culture sufficient numbers of DCs from human bone marrow or blood progenitors has attracted a great deal of interest in their potential utilization in human tumor vaccination. $CD34^+$ peripheral blood stem cells (PBSCs) were obtained from a patient with a hepatocellular carcinoma. The PBSCs were cultured in the X-VIVO 20 medium supplemented with the Flt-3 Ligand (FL), GM-CSF, IL-4 and TNF-$\alpha$ for 12 days. The morphology and functions of the cells were examined. The generated cells had the typical morphology of DCs. When the DCs were reinjected into the same patient, an augmentation of the cytotoxic T lymphocyte (CTL) activity was observed. Concomitantly, an increase in the natural killer (NK) cell activity was also detected in the patient. These results suggest that DCs-based cancer immunotherapy may become an important treatment option for cancer patients in the future.

Enhancement of TRAIL-Induced Apoptosis in Human Hepatocellular Carcinoma Cells by Apigenin (인체 간암세포에서 Apigenin에 의한 TRAIL 유도 Apoptosis의 증진 효과)

  • Kim, Eun-Young;Kim, An-Keun
    • YAKHAK HOEJI
    • /
    • v.55 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is one of the promising anti-cancer agent because of its ability to selectively induce apoptosis in tumor cell lines but not in normal cells. However, TRAIL resistance has been reported in some cancer cells including hepatocarcinoma cells. Therefore, studies of agents that sensitize TRAIL-resistant cancer cells could be a effective therapeutic approach in cancer management. In our study, we examined the effect of combination of TRAIL with apigenin in human hepatocellular carcinoma cells. As a result, the combined use of TRAIL and apigenin significantly enhanced the cytotoxicity in PLC-PRF5 cells. Flow cytometry analysis after annexin V-FITC/PI dual staining showed that this increase of cell cytotoxicity was related to enhanced apoptosis in combined treatment of TRAIL with apigenin. Furthermore, synergistic induction of apoptosis was also confirmed by observation of morphological changes and annexin V-FITC/PI fluorescence. Our findings suggests that apigenin has the potential to improve the efficiency of TRAIL-based therapies in human hepatocellular carcinoma cells. Further study is needed to reveal the molecular mechanisms of this combined therapy.

Ectopic Overexpression of COTE1 Promotes Cellular Invasion of Hepatocellular Carcinoma

  • Zhang, Hai;Huang, Chang-Jun;Tian, Yuan;Wang, Yu-Ping;Han, Ze-Guang;Li, Xiang-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5799-5804
    • /
    • 2012
  • Family with sequence similarity 189, member B (FAM189B), alias COTE1, a putative oncogene selected by microarray, for the first time was here found to be significantly up-regulated in hepatocellular carcinoma (HCC) specimens and HCC cell lines. mRNA expression of COTE1 in HCC samples and cell lines was detected by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR, while protein expression of COTE1 in HCC tissues was assessed by immunohistochemistry. In addition, invasion of HCC cells was observed after overexpressing or silencing COTE1. In the total of 48 paired HCC specimens, compared with the adjacent non-cancer tissues, the expression of COTE1 was up-regulated in 31 (p<0.01). In HCC cell lines, COTE1 expression was significantly higher than in normal human adult liver (p<0.01). Overexpression of COTE1 enhanced HCC-derived LM6 and MHCC-L cellular invasion in vitro. In contrast, COTE1 knockdown via RNAi markedly suppressed these phenotypes, as documented in LM3 and MHCC-H HCC cells. Mechanistic analyses indicated that COTE1 could physically associate with WW domain oxidoreductase (WWOX), a tumor suppressor. COTE1 may be closely correlated with invasion of hepatocellular carcinoma (HCC) cells and thus may serve as an effective target for gene therapy.

Induction of Human Hepatocellular Carcinoma HepG2 Cell Apoptosis by Naringin

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Khaw-on, Patompong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3289-3294
    • /
    • 2016
  • Naringin, a bioflavonoid found in Citrus seeds, inhibits proliferation of cancer cells. The objectives of this study were to investigate the mode and mechanism(s) of hepatocellular carcinoma HepG2 cell death induced by naringin. The cytotoxicity of naringin towards HepG2 cells proved dose-dependent, measured by MTT assay. Naringin-treated HepG2 cells underwent apoptosis also in a concentration related manner, determined by annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) employing flow cytometry. Mitochondrial transmembrane potential (MTP) measured using 3,3'-dihexyloxacarbocyanine iodide ($DiOC_6$) and flow cytometer was reduced concentration-dependently, which indicated influence on the mitochondrial signaling pathway. Caspase-3, -8 and -9 activities were enhanced as evidenced by colorimetric detection of para-nitroaniline tagged with a substrate for each caspase. Thus, the extrinsic and intrinsic pathways were linked in human naringin-treated HepG2 cell apoptosis. The expression levels of pro-apoptotic Bax and Bak proteins were increased whereas that of the anti-apoptotic Bcl-xL protein was decreased, confirming the involvement of the mitochondrial pathway by immunoblotting. There was an increased expression of truncated Bid (tBid), which indicated caspase-8 proteolysis activity in Bid cleavage as its substrate in the extrinsic pathway. In conclusion, naringin induces human hepatocellular carcinoma HepG2 cell apoptosis via mitochondria-mediated activation of caspase-9 and caspase-8-mediated proteolysis of Bid. Naringin anticancer activity warrants further investigation for application in medical treatment.

Gene Expression Changes Associated with Sustained p16 Expression in Hepatocellular Carcinoma Cells (간암세포주에서 지속적인 p16 단백질발현이 유도하는 유전자발현의 변화)

  • Oh, Sang-Jin;Im, Ji-Young;Jung, Che-Hun;Lee, Yong-Bok
    • IMMUNE NETWORK
    • /
    • v.4 no.4
    • /
    • pp.237-243
    • /
    • 2004
  • Background: The normal functions of the cell cycle inhibitor p16INK4a are frequently inactivated in many human cancers. Over 80% of hepatocellular carcinoma (HCC) cases lack a functional p16/Rb pathway. p16/Rb pathway, as well as p53 pathway, is considered as one of key components of tumor suppression. Methods: To study the roles of p16INK4a in HCC, a stable cell line expressing exogenous p16 was generated from SNU-449 hepatocellular carcinoma cells lacking endogenous p16, and suppression subtractive hybridization (SSH) was performed in parallel with the control cells. Results: 1) SSH identifies fibronectin (FN1), crystallin ${\alpha}B$ (CRYAB), Rac1, WASP, RhoGEF, and CCT3 as differentially-expressed genes. 2) Among the selected genes, the up-regulation of FN1 and CRYAB was confirmed by Northern blot, RT-PCR and by proteomic methods. Conclusion: These genes are likely to be associated with the induction of stress fiber and stabilization of cytoskeleton. Further studies are required to clarify the possible role of p16 in the signal transduction pathway.

Lymphopenia predicts reduced survival in canine hepatocellular carcinoma

  • Jose Israel Suarez-Rodriguez;Chin-Chi Liu;Shannon Dehghanpir;Andrea N. Johnston
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.36.1-36.7
    • /
    • 2023
  • Platelet to lymphocyte ratio (PLR) is a prognostic marker in human hepatocellular carcinoma (HCC) however, its utility in canine HCC has not been explored. The aim of the study was to determine if PLR could predict survival outcomes in 42 dogs with HCC. PLR was not a significant predictive factor (p = 0.15) but lymphopenia alone was significantly correlated with a reduced probability of survival (p = 0.024). Further studies are needed to evaluate if peripheral lymphocyte count mirrors that of the tumor microenvironment in canine HCC.

Study of the Suppressive Effect and Its Mechanism of Amomum Cardamomum L. on Free Fatty Acid-induced Liver Steatosis (지방간에 대한 백두구 에틸아세테이트 추출물의 억제 효과 및 기전 연구)

  • Lim, Dong Woo;Kim, Hyuck;Park, Sung Yun;Park, Sun Dong;Park, Won Hwan;Kim, Jai Eun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.159-166
    • /
    • 2017
  • Through this study, the authors investigated the anti-steatosis effects of the Amomum cardamomum ethyl acetate fraction in free fatty acids (FFAs)-induced human hepatocellular carcinoma HepG2 cells. The ethyl acetate fraction of Amomum cardamomum (ACEA) was extracted with 70% ethanol and then the extract was evaporated using a rotary evaporator prior to sequential fractionation. Human hepatocellular carcinoma were treated with different concentrations of ACEA in the presence and absence of FFAs. To demonstrate the reactive oxygen species (ROS) scavenging activity, DCFDA level was analyzed by using in vitro assay system. Cell viability, lipid accumulation, intracellular triglycerides, malondialdehyde (MDA), liver steatosis related signaling molecules and inflammatory cytokines such as interleukin (IL)-6, 8, tumor necrosis factor-alpha ($TNF-{\alpha}$) were also investigated. As results, ACEA inhibited the FFAs-induced ROS, lipid accumulation, intracellular triglycerides, and MDA in a dose dependent manner. Treatment of human hepatocellular cells with ACEA induced the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) and carnitine palmitoyltransferase I (CPT1) expression using western blot analysis. ACEA also potently suppressed the FFAs-induced inflammatory cytokines including IL-6, IL-8 and $TNF-{\alpha}$. These results suggest that the ethyl acetate fraction of Amomum cardamoum extract own inhibitory effects of liver steatosis by inhibiting ROS, lipid accumulation, intracellular triglycerides, MDA through AMPK signaling and anti-inflammatory actions.

Induction of Apoptosis by Aloe Vera Extract in Human Hepatocellular Carcinoma HepG2 Cells (알로에 베라 추출물에 의한 사람 간암 세포주 HepG2의 Apoptosis 유도)

  • Kim, Il-Rang;Kwon, Hoon-Jeong
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.329-332
    • /
    • 2006
  • Ethanolic extract of Aloe vera (Aloe barbadensis Miller) was examined for the cellular toxicity on HepG2 human hepatocellular carcinoma cells. Treatment with Aloe vera extract resulted in DNA fragmentation but not LDH release, suggesting an apoptosis instead of necrosis. Aloe vera induced cytotoxicity was mediated by decrease in ATP levels, whereas GSH depletion, increase in intracellular $Ca^{2+}$, or activation of caspase-3/7 could not be observed with statistical significance. No activation of caspase-3/7 suggests the possibility of caspase-independent apoptosis. Taken together, our results show that Aloe vera extract induce HepG2 apoptosis by ATP depletion-related impairment of mitochondria, which is caspase-independent.

Selective Gene Transfer to Hepatocellular Carcinoma Using Homing Peptide-Grafted Cationic Liposomes

  • Tu, Ying;Kim, Ji-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.821-827
    • /
    • 2010
  • Gene delivery that provides targeted delivery of therapeutic genes to the cells of a lesion enhances therapeutic efficacy and reduces toxic side effects. This process is especially important in cancer therapy when it is advantageous to avoid unwanted damage to healthy normal cells. Incorporating cancer-specific ligands that recognize receptors overexpressed on cancer cells can increase selective binding and uptake and, as a result, increase targeted transgene expression. In this study, we investigated whether a peptide capable of homing to hepatocellular carcinoma (HCC) could facilitate targeted gene delivery by cationic liposomes. This homing peptide (HBP) exhibited selective binding to a human hepatocarcinoma cell line, HepG2, at a concentration ranging from 5 to 5,000 nM. When conjugated to a cationic liposome, HBP substantially increased cellular internalization of plasmid DNA to increase the transgene expression in HepG2 cells. In addition, there was no significant enhancement in gene transfer detected for other human cell lines tested, including THLE-3, AD293, and MCF-7 cells. Therefore, we demonstrate that HBP provides targeted gene delivery to HCC by cationic liposomes.

Lentivirus-mediated Silencing of Rhomboid Domain Containing 1 Suppresses Tumor Growth and Induces Apoptosis in Hepatoma HepG2 Cells

  • Liu, Xue-Ni;Tang, Zheng-Hao;Zhang, Yi;Pan, Qing-Chun;Chen, Xiao-Hua;Yu, Yong-Sheng;Zang, Guo-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.5-9
    • /
    • 2013
  • Rhomboids were identified as the first intramembrane serine proteases about 10 years ago. Since then, the study of the rhomboid protease family has blossomed. Rhomboid domain containing 1 (RHBDD1), highly-expressed in human testis, contains a rhomboid domain with unknown function. In the present study, we tested the hypothesis that RHBDD1 was associated with proliferation and apoptosis in hepatocellular carcinoma using recombinant lentivirus-mediated silencing of RHBDD1 in HepG2 cells. Our results showed that down-regulation of RHBDD1 mRNA levels markedly suppressed proliferation and colony formation capacity of HepG2 human hepatoma cancer cells in vitro, and induced cell cycle arrest. We also found that RHBDD1 silencing could obviously trigger HepG2 cell apoptosis. In summary, it was demonstrated that RHBDD1 might be a positive regulator for proliferative and apoptotic characteristics of hepatocellular carcinoma.