• Title/Summary/Keyword: human haptic system

Search Result 56, Processing Time 0.028 seconds

Low-Frequency Haptic Interface Developed for Electrical Safety Experience Education

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.1
    • /
    • pp.75-78
    • /
    • 2015
  • Electric shock due to the increased use of power, equipment accidents, electrical accidents, such as electric fire and also continues to grow. To prevent electric shock accidents, an experience education is more effective than indoctrination education. But an electric shock experience education system required a proper physical stimulation on human body to experience electric shock. In this study, we conducted a study to take advantage of the realistic haptic interface using a low-frequency type experiential learning and prevention education. Results of this study could be applied to an electric shock experience education system.

Stability Analysis of a Haptic System with a Human Impedance model using the Routh-Hurwitz Criterion (루드-후르비쯔 (Routh-Hurwitz) 안정성 판별법을 이용한 인간의 임피던스가 포함된 햅틱 시스템의 안정성 분석)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1813-1818
    • /
    • 2014
  • This paper presents the stability analysis of the haptic system including a human impedance using the Routh-Hurwitz criterion. The reflective force is computed from a virtual spring model and is transferred to a human operator using the first-order-hold method. The stability boundary conditions are induced and the relation among a virtual spring ($K_w$), the mass ($M_h$), the damping ($B_h$) and the stiffness ($K_h$) of a human impedance is analyzed. Hence the stability boundary of the virtual spring ($K_w$) is proposed as $K_w{\leq}54413{\sqrt{(M_h+M_d)(B_h+B_d)}}-0.486K_h$ when the sampling time is 1 ms. The average relative error is about 0.5% when the mathematical analysis results are compared with the results of the stability boundary model.

Development of Virtual Science Experience Space(VSES) using Haptic Device (역감 제시 장치를 이용한 가상 과학 체험 공간 개발)

  • 김호정;류제하
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1044-1053
    • /
    • 2003
  • A virtual science experience space(VSES) using virtual reality technology including haptic device is proposed to overcome limits which the existing science education has and to improve the effect of it. Four example scientific worlds such as Micro World, Friction World, Electromechanical World and Macro World are demonstrated by the developed VSES. Van der Waals forces in Micro World and Stick-Slip friction in Friction World, the principle of induction motor and power generator in Electromechanical World and Coriolis acceleration that is brought about by relative motion on the rotating coordinate are modeled mathematically based on physical principles. Emulation methods for haptic interface are suggested. The proposed VSES consists of haptic device, HMD or Crystal Eyes and a digital computer with stereoscopic graphics and GUI. The proposed system is believed to increase the realism and immersion for user.

Development and Effect Analysis of Experiential Electrical Safety Education System Based on Virtual Reality (가상현실 기반 체험형 전기안전 교육 시스템의 개발 및 효과 분석)

  • Jeon, Jeong-Chay
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1767-1773
    • /
    • 2016
  • Every year, lives are lost due to electrical safety accidents that could have been prevented with proper education and awareness of electrical safety. To prevent such accidents, experiential education is more effective than indoctrination education. This paper describes the electrical safety education system based on virtual reality (VR) and evaluates effect of the proposed system. Users operated the experiential electrical safety education system, and they were provided electrical stimulation in an electric shock experience using a haptic device. Appropriate stimulation values were calculated according to age (children vs. adults) and gender through experiment. The scenario in which participants experience electrical safety in the home environment was structured, and related educational contents was produced. A total of 68 healthy elementary students evaluated the educational effect of the system. The results showed that the educational effect and the sustainability of effect of the proposed system are superior to those of existing multimedia learning methods. By implementing electrical safety education stimulating the senses of human, the learning effect was promoted and this experiential education would be able to prevent electrical accidents.

Adaptive Mass-Spring Method for the Synchronization of Dual Deformable Model (듀얼 가변형 모델 동기화를 위한 적응성 질량-스프링 기법)

  • Cho, Jae-Hwan;Park, Jin-Ah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Traditional computer simulation uses only traditional input and output devices. With the recent emergence of haptic techniques, which can give users kinetic and tactile feedback, the field of computer simulation is diversifying. In particular, as the virtual-reality-based surgical simulation has been recognized as an effective training tool in medical education, the practical virtual simulation of surgery becomes a stimulating new research area. The surgical simulation framework should represent the realistic properties of human organ for the high immersion of a user interaction with a virtual object. The framework should make proper both haptic and visual feedback for high immersed virtual environment. However, one model may not be suitable to simulate both haptic and visual feedback because the perceptive channels of two feedbacks are different from each other and the system requirements are also different. Therefore, we separated two models to simulate haptic and visual feedback independently but at the same time. We propose an adaptive mass-spring method as a multi-modal simulation technique to synchronize those two separated models and present a framework for a dual model of simulation that can realistically simulate the behavior of the soft, pliable human body, along with haptic feedback from the user's interaction.

  • PDF

Human body learning system using multimodal and user-centric interfaces (멀티모달 사용자 중심 인터페이스를 적용한 인체 학습 시스템)

  • Kim, Ki-Min;Kim, Jae-Il;Park, Jin-Ah
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.85-90
    • /
    • 2008
  • This paper describes the human body learning system using the multi-modal user interface. Through our learning system, students can study about human anatomy interactively. The existing learning methods use the one-way materials like images, text and movies. But we propose the new learning system that includes 3D organ surface models, haptic interface and the hierarchical data structure of human organs to serve enhanced learning that utilizes sensorimotor skills.

  • PDF

A Dexterous Teleoperation System for Micro Parts Handling (마이크로 조립시스템의 원격제어)

  • Kim, Deok-Ho;Kim, Kyung-Hwan;Kim, Keun-Young;Park, Jong-Oh
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.158-163
    • /
    • 2001
  • Operators suffer much difficulty in manipulating micro/nano-sized objects without the assistance of human interfaces, due to the scaling effects in micro/nano world. This paper presents a micro manipulation system based on the teleoperation techniques which enables the operators to manipulate the objects with ease by transferring both human motion and manipulation skill to a micromanipulator. An experimental setup consisting of a micromanipulator operated under stereo-microscope with the help of intelligent user interface provides a tool that can be used to visualize and manipulate micro-sized 3D objects in a controlled manner. The key features of a micro manipulation system and control strategies using teleoperation techniques for handling micro objects are presented. Experimental results demonstrate the feasibility of this system in precisely controlling trapping and manipulation of micro objects based on teleoperation techniques.

  • PDF

Tension Based 7 DOEs Force Feedback Device: SPIDAR-G

  • Kim, Seahak;Yasuharu Koike;Makoto Sato
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • In this paper, we intend to demonstrate a new intuitive force-feedback device for advanced VR applications. Force feed-back for the device is tension based and is characterized by 7 degrees of freedom (DOF); 3 DOF for translation, 3 DOF for rotation, and 1 DOF for grasp). The SPIDAR-G (Space Interface Device for Artificial Reality with Grip) will allow users to interact with virtual objects naturally by manipulating two hemispherical grips located in the center of the device frame. We will show how to connect the strings between each vertex of grip and each extremity of the frame in order to achieve force feedback. In addition, methodologies will be discussed for calculating translation, orientation and grasp using the length of 8 strings connected to the motors and encoders on the frame. The SPIDAR-G exhibits smooth force feedback, minimized inertia, no backlash, scalability and safety. Such features are attributed to strategic string arrangement and control that results in stable haptic rendering. The design and control of the SPIDAR-G will be described in detail and the Space Graphic User Interface system based on the proposed SPIDAR-G system will be demonstrated. Experimental results validate the feasibility of the proposed device and reveal its application to virtual reality.

Virtual Science Lab - Sensible Human Body Learning System (가상 과학 실험실 - 체감형 인체 구조 학습 시스템)

  • Kim, Ki-Min;Kim, Jae-Il;Kim, Seok-Yeol;Park, Jin-Ah
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.2078-2079
    • /
    • 2009
  • This research suggests the framework for human body learning system using various forms of bidirectional interfaces. The existing systems mostly use the limited and unidirectional methods which are merely focused on the visual information. Our system provides more realistic visual information using 3D organ models from the real human body. Also we combine the haptic and augmented reality techniques into our system for wider range of interaction means. Through this research, we aim to overcome the limitation of existing science education systems and explore the effective scheme to fuse the real and virtual educational environment into one.

  • PDF

Haptic Perception presented in Picturesque Gardens - With a Focus on Picturesque Garden in Eighteenth-Century England - (픽처레스크 정원에 나타난 촉지적 지각 - 18세기 영국 픽처레스크 정원을 중심으로 -)

  • Kim, Jin-Seob;Kim, Jin-Seon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.2
    • /
    • pp.37-51
    • /
    • 2016
  • Modern optical mechanisms slanted toward Ocular-centrism have neglected diverse functions of vision, judged objects in abstract and binary perspectives, and organized spaces accordingly, there by neglecting the function of eyes groping objects. Recently, various experiences have been induced through communication with other senses by the complex perception beyond the binary perception system of vision. Haptic perception is dynamic vision that induces accompanying bodily experiences through interaction among the various senses; it recognizes the characteristics of material properties and various sensitive stimulations of human beings. This study elaborates on the major features of haptic perception by examining the theoretical background of this concept, which stimulates the active experience of the subject and determines how characteristics of haptic perception are displayed in picturesque gardens. In order to identify the major features of haptic perception, this study examines how Adolf Hildebrand's theory of vision is developed, expanded, and reinterpreted by Alois Riegl, Wilhelm Worringer, Walter Benjamin, Maurice Merleau Ponty, and Gilles Deleuze in the histories of philosophy and aesthetics. Based thereon, the core differences in haptic perception models and visual perception models are analyzed, and the features of haptic perception are identified. Then, classical gardens are set for visual perception and picturesque gardens are set for haptic perception so that the features from haptic perception identified previously are projected onto the picturesque gardens. The research results drawn from this study regarding features of haptic perception presented in picturesque gardens are as follows. The core differences of haptic perception in contrast to visual perception can be summarized as ambiguity and obscureness of boundaries, generation of dynamic perspectives, induction of motility by indefinite circulation, and strangeness and sublime beauty by the impossibility of perception. In picturesque gardens, the ambiguity and obscureness of boundaries are presented in the irregularity and asymmetric elements of planes and the rejection of a single view, and the generation of dynamic perspectives results from the adoption of narrative structure and overlapping of spaces through the creation of complete views, medium range views, and distant views, which the existing gardens lack. Thus, the scene composition technique is reproduced. The induction of motility by indefinite circulation is created by branching circulation, and strangeness and sublime beauty are presented through the use of various elements and the adoption of 'roughness', 'irregularity', and 'ruins' in the gardens.