• 제목/요약/키워드: human hair follicle

검색결과 48건 처리시간 0.021초

Lgr5와 결합하는 신규 헵타펩타이드를 이용한 인체 모낭 세포의 활성과 모낭줄기세포 분화 유도 (Novel Heptapeptide Binds to the Lgr5 Induces Activation of Human Hair Follicle Cells and Differentiation of Human Hair Follicle Bulge Stem Cells)

  • 김민웅;이응지;길하나;정용지;김은미
    • 대한화장품학회지
    • /
    • 제49권1호
    • /
    • pp.75-85
    • /
    • 2023
  • 본 연구에서는 7 개의 아미노산으로 이루어진 헵타펩타이드의 Lgr5 binding에 따른 인체 모낭 구성 세포의 활성에 대한 영향을 확인하였다. 표면 플라즈몬 공명(surface plasmon resonance, SPR) 시스템을 이용하여 헵타펩타이드가 Lgr5에 결합하는 것을 확인하였다. 인체 모유두세포(human hair follicle dermal papilla cell, HHFDPC)에 헵타펩타이드를 처리한 결과, 농도 의존적인 세포 증식이 나타났으며 β-catenin의 세포 내핵 이동 및 하위 유전자인 LEF1, Cyclin-D1, c-Myc의 발현 증가가 관찰되었다. 그리고 세포 증식 기전 관련 인자인 Akt와 ERK의 인산화 수준이 증가되었으며, 성장인자인 hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF) 발현이 유도되었다. 또한 인체 모모세포(human hair germinal matrix cell, HHGMC)의 분화 관련 전사 인자와 인체 외모근초세포(human hair outer root sheath cell, HHORSC)의 분화 표지 인자들도 헵타펩타이드 처리 시 높은 발현율을 보였다. 추가적으로 우리는 헵타펩타이드의 인체 모낭줄기세포(human hair follicle stem cell, HHFSC) 분화에 대한 영향을 조사하였다. 그 결과, HHFSC 표지인자들의 mRNA와 단백질 수준이 감소하였고 반면에 분화 표지인자들은 증가하였다. 상기의 결과들은 헵타펩타이드가 인체 모낭 구성 세포에서 Wnt/β-catenin 경로를 촉진시켜 증식 또는 분화를 유도할 수 있음을 보여준다. 이를 토대로 종합해 볼 때, 본 연구의 헵타펩타이드는 모발 성장을 유도하고 탈모 개선에 도움을 줄 수 있는 기능성 원료로 사용될 수 있을 것으로 보인다.

사람태아 성장기 모낭에서 결합조직-상피 경계부의 미세구조에 관한 연구 (Ultrastructural Study on Connective Tissue-Epithelial Junctions in Anagen Hair Follicle of Human Fetus)

  • 김백윤;박민아;남광일
    • Applied Microscopy
    • /
    • 제27권3호
    • /
    • pp.321-332
    • /
    • 1997
  • The dermal papilla is known to playa major role in influencing the form and dynamics of the hair follicle, which probably involves regulatory substances crossing the basal lamina. But little is known about the junctions between the dermal papilla and the surrounding epithelial cells of the hair bulb, or between the connective tissue and the epithelial cells on the outside of the hair follicle. This study was performed to identify the ultrastructural differences between dermoepidermal junction of the skin and connective tissue-epithelial junctions on the outside of the hair follicle and around the dermal papilla of normal anagen hair follicles in the human fetal scalp skin. Electron microscopic findings of dermoepidermal junction in scalp skin showed that basal lamina was very irregular and undulated, and it contained many attachment plaques of hemidesmosomes with sub-basal dense plates, tonofilaments, and anchoring filaments. Also invaginations of plasma membrane of basal keratinocytes were seen. There were clear differences both on the outside of the follicle and around the dermal papilla as compared with similar junction in the skin. In particular, neither hemidesmosomes nor tonofilaments, as seen in dermoepidermal junction, were observed in the dermal papilla. Also attachment plaque, sub-basal dense plate and anchoring filaments were not observed at the junction on the outside of the follicle and the dermal papilla. There were some differences between connective tissue-epithelial junctions on the outside of the hair follicle and around the dermal papilla, ie, smoothness of basal lamina and orthogonal arrangement of collagen fibers were seen in the outside of hair follicle, but not in the dermal papilla. These results indicate that the mechanical connection between the hair follicle and the connective tissue component is much weaker than that between the corresponding components in skin, and it reflects the dynamic processes during the anagen phase of the hair follicle compared to the relatively permanent state of the epidermis.

  • PDF

Protective effect of Korean Red Ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model

  • Keum, Dong In;Pi, Long-Quan;Hwang, Sungjoo Tommy;Lee, Won-Soo
    • Journal of Ginseng Research
    • /
    • 제40권2호
    • /
    • pp.169-175
    • /
    • 2016
  • Background: Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects for patients undergoing chemotherapy. This study evaluated the protective effect of Korean Red Ginseng (KRG) on CIA in a well-established in vitro human hair follicle organ culture model as it occurs in vivo. Methods: We examined whether KRG can prevent premature hair follicle dystrophy in a human hair follicle organ culture model during treatment with a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Results: 4-HC inhibited human hair growth, induced premature catagen development, and inhibited proliferation and stimulated apoptosis of hair matrix keratinocytes. In addition, 4-HC increased p53 and Bax protein expression and decreased Bcl2 protein expression. Pretreatment with KRG protected against 4-HC-induced hair growth inhibition and premature catagen development. KRG also suppressed 4-HC-induced inhibition of matrix keratinocyte proliferation and stimulation of matrix keratinocyte apoptosis. Moreover, KRG restored 4-HC-induced p53 and Bax/Bcl2 expression. Conclusion: Overall, our results indicate that KRG may protect against 4-HC-induced premature catagen development through modulation of p53 and Bax/Bcl2 expression.

인체 두피 모낭의 장기간 배양을 위한 기관 배양 배지의 개발 (Development of Organ Culture Medium for Long Term Culture of Human Hair Follicle)

  • 유보영;윤희훈;신연호;서영권;이두훈;송계용;황성주;박정극
    • Korean Chemical Engineering Research
    • /
    • 제44권1호
    • /
    • pp.58-64
    • /
    • 2006
  • 본 연구에서는 인체 두피조직에서 미세수술법을 이용하여 모낭을 성공적으로 분리하였으며 다양한 조건으로 액침기관배양을 수행하였다. 우태아 혈청첨가시 모낭의 길이 성장이 저해되는 것으로 확인되어 무혈청 배지 조성을 시도하였다. 무혈청 배지로는 모낭 기관배양에 널리 이용되는 Williams'E medium을 기본으로 하는 Philpott medium과 자체 개발한 고농도 아미노산과 비타민(B군) 조성의 DHGM(Dongguk hair growth medium)을 이용하였다. 그리고 IMDM은 DHGM의 비교 대조군으로 이용하였다. 연구 결과 Philpott medium과 IMDM으로 배양한 모낭은 구조상으로는 길이 성장이 각각 9일과 12일 정도에 멈추며, 낮은 알카라인 포스파테이즈 발현, CK19 발현이 거의 없는 것으로 보아 세포사멸에 의한 퇴화(regression)가 빠르게 일어나는 것으로 판단되었다. 반면, DHGM으로 배양한 모낭은 상대적으로 긴 기간 동안 성장기의 구조를 보이며 25일까지 지속적인 길이 증가 및 3배 높은 알카라인 포스파테이즈 발현, 전반적인 CK19 발현을 나타내었다. 따라서 고농도의 아미노산 및 비타민 배지 조성이 생체 외에서 모낭을 장기간 배양하는데 중요한 역할을 하는 것으로 판단된다. 이러한 배양 방법은 장기간 검사를 필요로 하는 모낭에 대한 기초 생물학적 연구뿐만 아니라 새로운 탈모치료제의 효능 평가 분야에 이용될 수 있을 것이다.

Efficacy of Caffeine in Promoting Hair Growth by Enhancing Intracellular Activity of Hair Follicles

  • Kim, Sehyun;Kim, Su Na;Jeong, Gyusang;Hong, Min Jung;Lee, Yonghee;Shin, Seung Hyun;Park, Hyeokgon;Jung, Yu Chul;Kim, Eun Joo;Park, Byung Cheol;Kim, Hyoung-June
    • Korea Journal of Cosmetic Science
    • /
    • 제1권1호
    • /
    • pp.11-18
    • /
    • 2019
  • Caffeine is widely used in cosmetics and hair care products. Although its efficacy in stimulating hair growth has been confirmed in recent studies, its mechanism of action remains unelucidated. The present study aimed to determine the effects of caffeine on hair growth, with a focus on intracellular hair follicle activity. Experiments included in vitro and ex vivo tests, and a clinical study. Caffeine enhanced the cellular activity and potassium channel opening. It also promoted human hair follicle elongation. Immunohistochemical staining showed that the Ki-67 signal was significantly higher in cells treated with caffeine. These efficacies of caffeine were comprehensively demonstrated in clinical results, wherein caffeine-containing shampoo improved hair density after 24 weeks of testing. Collectively, the results of this study demonstrated that caffeine promoted hair growth and inhibited the progression of hair loss by enhancing intracellular activity of hair follicles.

The Hairless Gene: A Putative Navigator of Hair Follicle Development

  • Kim, Jeong-Ki;Kim, Bong-Kyu;Park, Jong-Keun;Choi, Jee-Hyun;KimYoon, Sung-Joo
    • Genomics & Informatics
    • /
    • 제9권3호
    • /
    • pp.93-101
    • /
    • 2011
  • The Hairless (HR ) gene regulates the expression of several target genes as a transcriptional corepressor of nuclear receptors. The hair follicle (HF), a small independent organ of the skin, resides in the epidermis and undergoes regenerative cycling for normal hair formation. HF development requires many genes and signaling pathways to function properly in time and space, one of them being the HR gene. Various mutations of the HR gene have been reported to cause the hair loss pheno-type in rodents and humans. In recent studies, it has been suggested that the HR gene is a critical player in the regulation of the hair cycle and, thus, HF development. Furthermore, the HR gene is associated with the Wnt signaling pathway, which regulates proliferation and differentiation of cells and plays an essential role in hair and skin development. In this review, we summarize the mutations responsible for human hair disorders and discuss the roles of the HR gene in HF development.

Establishment and Characterization of Immortalized Human Dermal Papilla Cells Expressing Human Papillomavirus 16 E6/E7

  • Seonhwa Kim;Kyeong-Bae Jeon;Hyo-Min Park;Jinju Kim;Chae-Min Lim;Do-Young Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.506-515
    • /
    • 2024
  • Primary human dermal papilla cells (HDPCs) are often preferred in studies on hair growth and regeneration. However, primary HDPCs are limited by their reduced proliferative capacity, decreased hair induction potential, and extended doubling times at higher passages. To overcome these limitations, pTARGET vectors containing human papillomavirus16 (HPV16) E6/E7 oncogenes were transfected into HDPCs and selected using G-148 to generate immortalized cells here. HPV16 E6/E7 oncogenes were efficiently transfected into primary HDPCs. Immortalized HDPC showed higher proliferative activity than primary HDPC, confirming an increased proliferation rate. Expression of p53 and pRb proteins was downregulated by E6 and E7, respectively. E6/E7 expressing HDPC cells revealed that cyclin-dependent kinase (CDK) inhibitor p21 expression was decreased, while cell cycle-related genes and proteins (CDK2 and cyclin E) and E2F family genes were upregulated. Immortalized HDPCs maintained their responsiveness to Wnt/β-catenin pathway and hair follicle formation capability, as indicated by their aggregative properties and stemness. E6/E7 immortalized HDPCs may facilitate in vitro hair growth and regeneration studies.

3-Deoxysappanchalcone Promotes Proliferation of Human Hair Follicle Dermal Papilla Cells and Hair Growth in C57BL/6 Mice by Modulating WNT/β-Catenin and STAT Signaling

  • Kim, Young Eun;Choi, Hyung Chul;Lee, In-Chul;Yuk, Dong Yeon;Lee, Hyosung;Choi, Bu Young
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.572-580
    • /
    • 2016
  • 3-Deoxysappanchalcone (3-DSC) has been reported to possess anti-allergic, antiviral, anti-inflammatory and antioxidant activities. In the present study, we investigated the effects of 3-DSC on the proliferation of human hair follicle dermal papilla cells (HDPCs) and mouse hair growth in vivo. A real-time cell analyzer system, luciferase assay, Western blot and real-time polymerase chain reaction (PCR) were employed to measure the biochemical changes occurring in HDPCs in response to 3-DSC treatment. The effect of 3-DSC on hair growth in C57BL/6 mice was also examined. 3-DSC promoted the proliferation of HDPCs, similar to Tofacitinib, an inhibitor of janus-activated kinase (JAK). 3-DSC promoted phosphorylation of ${\beta}$-catenin and transcriptional activation of the T-cell factor. In addition, 3-DSC potentiated interleukin-6 (IL-6)-induced phosphorylation and subsequent transactivation of signal transducer and activator of transcription-3 (STAT3), thereby increasing the expression of cyclin-dependent kinase-4 (Cdk4), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF). On the contrary, 3-DSC attenuated STAT6 mRNA expression and IL4-induced STAT6 phosphorylation in HDPCs. Finally, we observed that topical application of 3-DSC promoted the anagen phase of hair growth in C57BL/6 mice. 3-DSC stimulates hair growth possibly by inducing proliferation of follicular dermal papilla cells via modulation of $WNT/{\beta}$-catenin and STAT signaling.

Wnt/β-catenin signaling activator restores hair regeneration suppressed by diabetes mellitus

  • Yeong Chan, Ryu;You-rin, Kim;Jiyeon, Park;Sehee, Choi;Geon-Uk, Kim ;Eunhwan, Kim;Yumi, Hwang;Heejene, Kim;Soon Sun, Bak;Jin Eun, Lee;Young Kwan, Sung;Gyoonhee, Han;Soung-Hoon, Lee;Kang-Yell, Choi
    • BMB Reports
    • /
    • 제55권11호
    • /
    • pp.559-564
    • /
    • 2022
  • Diabetes mellitus is one of the most prevalent diseases in modern society. Many complicationssuch as hepatic cirrhosis, neuropathy, cardiac infarction, and so on are associated with diabetes. Although a relationship between diabetes and hair loss has been recently reported, the treatment of diabetic hair loss by Wnt/β-catenin activators has not been achieved yet. In this study, we found that the depilation-induced anagen phase was delayed in both db/db mice and high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic mice. In diabetic mice, both hair regrowth and wound-induced hair follicle neogenesis (WIHN) were reduced because of suppression of Wnt/β-catenin signaling and decreased proliferation of hair follicle cells. We identified that KY19382, a small molecule that activates Wnt/β-catenin signaling, restored the capabilities of regrowth and WIHN in diabetic mice. The Wnt/β-catenin signaling activator also increased the length of the human hair follicle which was decreased under high glucose culture conditions. Overall, the diabetic condition reduced both hair regrowth and regeneration with suppression of the Wnt/β-catenin signaling pathway. Consequently, the usage of Wnt/β-catenin signaling activators could be a potential strategy to treat diabetes-induced alopecia patients.

Ginsenoside Re prevents 3-methyladenine-induced catagen phase acceleration by regulating Wnt/β-catenin signaling in human dermal papilla cells

  • Gyusang Jeong;Seung Hyun Shin;Su Na Kim;Yongjoo Na;Byung Cheol Park;Jeong Hun Cho;Won-Seok Park;Hyoung-June Kim
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.440-447
    • /
    • 2023
  • Background: The human hair follicle undergoes cyclic phases-anagen, catagen, and telogen-throughout its lifetime. This cyclic transition has been studied as a target for treating hair loss. Recently, correlation between the inhibition of autophagy and acceleration of the catagen phase in human hair follicles was investigated. However, the role of autophagy in human dermal papilla cells (hDPCs), which is involved in the development and growth of hair follicles, is not known. We hypothesized that acceleration of hair catagen phase upon inhibition of autophagy is due to the downregulation of Wnt/β-catenin signaling in hDPCs, and that components of Panax ginseng extract can increase the autophagic flux in hDPCs. Methods: We generated an autophagy-inhibited condition using 3-methyladenine (3-MA), a specific autophagy inhibitor, and investigated the regulation of Wnt/β-catenin signaling using the luciferase reporter assay, qRT-PCR, and western blot analysis. In addition, cells were cotreated with ginsenoside Re and 3-MA and their roles in inhibiting autophagosome formation were investigated. Results: We found that the unstimulated anagen phase dermal papilla region expressed the autophagy marker, LC3. Transcription of Wnt-related genes and nuclear translocation of β-catenin were reduced after treatment of hDPCs with 3-MA. In addition, treatment with the combination of ginsenoside Re and 3-MA changed the Wnt activity and hair cycle by restoring autophagy. Conclusions: Our results suggest that autophagy inhibition in hDPCs accelerates the catagen phase by downregulating Wnt/β-catenin signaling. Furthermore, ginsenoside Re, which increased autophagy in hDPCs, could be useful for reducing hair loss caused by abnormal inhibition of autophagy.