• Title/Summary/Keyword: human diseases

Search Result 3,157, Processing Time 0.035 seconds

Revisiting Hepatoprotective Natural Products from a Biological Point of View

  • Kim, Hong-Pyo;Kim, Young-Choong
    • Natural Product Sciences
    • /
    • v.17 no.3
    • /
    • pp.165-174
    • /
    • 2011
  • Naturally occurring small molecules from plants, microorganisms, and animals allow the design of drugs that can be beneficial in virtually all kinds of human diseases. Liver diseases with diverse etiologies such as viral infection, chemical intoxication, and metabolic fat accumulation are one of the leading causes of human mortality. Unfortunately, however, there are few effective drugs available capable of stopping or reversing the progress of liver disease. Here, we discuss the current advances in developing hepatoprotective natural products for several arrays of liver disease pathogenesis.

${\ll}$영추(靈樞).논용(論勇)${\gg}$ 에 대(對)한 연구(硏究)

  • Lee Nam-Gu;Jang Dae-Won
    • Journal of Korean Medical classics
    • /
    • v.13 no.1
    • /
    • pp.328-344
    • /
    • 2000
  • YoungChu NonYong(靈樞 論勇)seems to be named as such by its explanation in detail about the brave man who can and the coward who cannot stand pain respectively. In the first chapter, it is considered that the factors of diseases are dependent upon the state of skin and flash. In the second chapter, it is put about the problem of standing pain and not. In the third chapter, about the causes of resulting in brave or unbrave man. And in the fourth chapter, about drunken frenzy(酒悖). More concretely speaking, in the first chapter, it is explained that the factors of pathogenesis are related closely with the state of skin and flash, so to speak, though the outer factors which can arouse diseases should exist, the sensitivity of skin and flash which are the first defense tissue in human body, is more important factor. Undoubtedly, the environmental factors existing in physical nature which surrounds human life, have influenced upon human health, especially in ancient times. But, this chapter exhibits some reflections that ultimately the inner conditions of human body decide the attack of diseases. However, this chapter may have some corruptions for it reveals the contents which are not fit with the headline. In the second chapter, it is written that the sensitivity to pain is not only dependent upon the character of bravery but also upon the thickness of skin, the strength of flesh and the speed of response. In this we evidence that the ancient people had the idea that human pain-feeling is more dependent upon the degree of development of sensory neuron of physical body than one's character of bravery. In the third chapter, ti is described that the differences of physical development mainly influence the differences of the degree of mental bravery. In the fourth chapter, the drunken frenzy is explained. The implication is that as civilization has been growing, the drinking culture has made both in dividual and social health affair. The alcohol has the function of pleasing mind improving the quality of human life but it can also destroy both human body and mind when abused. About the harms like this, this part wams by the examples of drunken man's abnormal behaviors.

  • PDF

Interventional cardiology in small animals

  • Hyun, Chang-Baig
    • Proceedings of the Korean Society of Veterinary Clinics Conference
    • /
    • 2009.04a
    • /
    • pp.134-136
    • /
    • 2009
  • Interventional cardiology is a branch of the medical specialty of cardiology that deals specifically with the catheter based treatment of structural heart diseases. A large number of procedures can be performed on the heart by catheterization. Although many cardiac diseases requiring open heart surgery are currently treated with cardiac interventions in human medicine, interventional cardiology is relatively recently introduced in veterinary medicine. Therefore, in this lecture, several interventional methods for various diseases of small animals, more focusing on interventional methods in heart diseases will be discussed.

  • PDF

Immunostimulatory Effects of Silica Nanoparticles in Human Monocytes

  • Yang, Eun-Jeoung;Choi, In-Hong
    • IMMUNE NETWORK
    • /
    • v.13 no.3
    • /
    • pp.94-101
    • /
    • 2013
  • Amorphous silica particles, whose applications are increasing in many biomedical fields, are known to be less toxic than crystalline silica. In this study, the inflammatory effects of amorphous silica nanoparticles were investigated using 30-nm amorphous silica nanoparticles and human peripheral blood mononuclear cells (PBMCs) or purified monocytes. As a result, production of IL-$1{\beta}$ and IL-8 were increased. In addition, the mitochondrial reactive oxygen species (ROS) was detected, which may lead to mitochondrial membrane disruption. Most importantly, inflammasome formation was observed. Therefore, these results provide immunological information about amorphous silica nanoparticles and suggest that amorphous silica nanoparticles can evoke innate immune reactions in human monocytes through production of IL-$1{\beta}$ and IL-8.

Human Induced Pluripotent Stem Cells : Clinical Significance and Applications in Neurologic Diseases

  • Chang, Eun-Ah;Jin, Sung-Won;Nam, Myung-Hyun;Kim, Sang-Dae
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.5
    • /
    • pp.493-501
    • /
    • 2019
  • The generation of human induced pluripotent stem cells (iPSCs) from somatic cells using gene transfer opens new areas for precision medicine with personalized cell therapy and encourages the discovery of essential platforms for targeted drug development. iPSCs retain the genome of the donor, may regenerate indefinitely, and undergo differentiation into virtually any cell type of interest using a range of published protocols. There has been enormous interest among researchers regarding the application of iPSC technology to regenerative medicine and human disease modeling, in particular, modeling of neurologic diseases using patient-specific iPSCs. For instance, Parkinson's disease, Alzheimer's disease, and spinal cord injuries may be treated with iPSC therapy or replacement tissues obtained from iPSCs. In this review, we discuss the work so far on generation and characterization of iPSCs and focus on recent advances in the use of human iPSCs in clinical setting.

Effect of Cnidii Rhizoma on Proliferation of Breast Cancer Cell, Nitric Oxide Production and Ornithine Decarboxylase Activity (천궁이 유방암세포 증식, Nitric Oxide 생성 및 Ornithine Decarboxylase 활성에 미치는 영향)

  • Nam, Kyung-Soo;Son, Ok-Lye;Lee, Kyung-Hwa;Cho, Hyun-Jung;Shon, Yun-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.4 s.139
    • /
    • pp.283-287
    • /
    • 2004
  • The effect of water extract from Cnidii Rhizoma (CRW) on proliferation of human breast cancer cells, nitric oxide production, nitric oxide synthase expression, and ornithine decarboxylase activity was tested. CRW inhibited the growth of both estrogen-dependent MCF-7 and estrogen-independent MDA-MB-23I human breast cancer cells. Lipopolysaccharide-induced nitric oxide (NO) production was significantly reduced by CRW at the concentration of 0.5, 1.0 and 5.0 mg/ml. Expression of inducible nitric oxide synthase (iNOS) was also suppressed with the treatment of CRW in Raw 264.7 cells. CRW inhibited induction of ornithine decarboxylase by 12-0-tetradecanoylphorbol-13-acetate, a key enzyme of polyamine biosynthesis, which is enhanced in tumour promotion. Therefore, CRW is worth further investigation with respect to breast cancer chemoprevention or therapy.

Using zebrafish as an animal model for studying rare neurological disorders: A human genetics perspective

  • Dilan Wellalage Don;Tae-Ik Choi;Tae-Yoon Kim;Kang-Han Lee;Yoonsung Lee;Cheol-Hee Kim
    • Journal of Genetic Medicine
    • /
    • v.21 no.1
    • /
    • pp.6-13
    • /
    • 2024
  • Rare diseases are characterized by a low prevalence, which often means that patients with such diseases are undiagnosed and do not have effective treatment options. Neurodevelopmental and neurological disorders make up around 40% of rare diseases and in the past decade, there has been a surge in the identification of genes linked to these conditions. This has created the need for model organisms to reveal mechanisms and to assess therapeutic methods. Different model animals have been employed, like Caenorhabditis elegans, Drosophila, zebrafish, and mice, to investigate the rare neurological diseases and to identify the causative genes. While the zebrafish has become a popular animal model in the last decade, mainly for studying brain development, understanding neural circuits, and conducting chemical screens, the mouse has been a very well-known model for decades. This review explores the strengths and limitations of using zebrafish as a vertebrate animal model for rare neurological disorders, emphasizing the features that make this animal model promising for the research on these disorders.

Identification and Phylogeny of the Human Endogenous Retrovirus HERV-W LTR Family in Human Brain cDNA Library and Xq21.3 Region

  • KIM, HEUI-SOO;TIMOTHY J. CRO
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.508-513
    • /
    • 2002
  • Human endogenous retroviral long terminal repeats (LTRs) have been found to be coexpressed with sequences of genes located nearby. It has been suggested that the LTR elements have contributed to the structural change or genetic variation of human genome connected to various diseases. The HERV-W family has been identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Using a cDNA library derived from a human brain, the HERV-W LTR elements were examined and five new LTR elements were identified. These elements were examined using a YAC clone panel from the Xq21.3 region linked to psychosis that was replicated on the Y chromosome after the separation of the chimpanzee and human lineages. Fourteen elements of the HERV-W LTR were identified in that region. Those LTR elements showed a high degree of sequence similarity ($91.8-99.5\%$) with previously reported HERV-W LTR. A phylogenetic tree obtained from the neighbor-joining method revealed that new HERV-W LTR elements were closely related to the AXt000960, AF072504, and AF072506 from the GenBank database. The data indicates that several copy numbers of the HERV-W LTR elements exist on the Xq21.3 region and are also expressed in the human brain. These LTR elements need to be further investigated as potential leads to neuropsychiatric diseases.

Erratum to: Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines

  • Iqbal, Muhammad Arsalan;Hong, Kwonho;Kim, Jin Hoi;Choi, Youngsok
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.718-727
    • /
    • 2019
  • Severe combined immunodeficiency (SCID) is a group of inherited disorders characterized by compromised T lymphocyte differentiation related to abnormal development of other lymphocytes [i.e., B and/or natural killer (NK) cells], leading to death early in life unless treated immediately with hematopoietic stem cell transplant. Functional NK cells may impact engraftment success of life-saving procedures such as bone marrow transplantation in human SCID patients. Therefore, in animal models, a T cell-/B cell-/NK cell+ environment provides a valuable tool for understanding the function of the innate immune system and for developing targeted NK therapies against human immune diseases. In this review, we focus on underlying mechanisms of human SCID, recent progress in the development of SCID animal models, and utilization of SCID pig model in biomedical sciences. Numerous physiologies in pig are comparable to those in human such as immune system, X-linked heritability, typical T-B+NK- cellular phenotype, and anatomy. Due to analogous features of pig to those of human, studies have found that immunodeficient pig is the most appropriate model for human SCID.

Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines

  • Iqbal, Muhammad Arsalan;Hong, Kwonho;Kim, Jin Hoi;Choi, Youngsok
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.625-634
    • /
    • 2019
  • Severe combined immunodeficiency (SCID) is a group of inherited disorders characterized by compromised T lymphocyte differentiation related to abnormal development of other lymphocytes [i.e., B and/or natural killer (NK) cells], leading to death early in life unless treated immediately with hematopoietic stem cell transplant. Functional NK cells may impact engraftment success of life-saving procedures such as bone marrow transplantation in human SCID patients. Therefore, in animal models, a T cell-/B cell-/NK cell+ environment provides a valuable tool for understanding the function of the innate immune system and for developing targeted NK therapies against human immune diseases. In this review, we focus on underlying mechanisms of human SCID, recent progress in the development of SCID animal models, and utilization of SCID pig model in biomedical sciences. Numerous physiologies in pig are comparable to those in human such as immune system, X-linked heritability, typical T-B+NK- cellular phenotype, and anatomy. Due to analogous features of pig to those of human, studies have found that immunodeficient pig is the most appropriate model for human SCID.