Browse > Article
http://dx.doi.org/10.5483/BMBRep.2019.52.11.267

Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines  

Iqbal, Muhammad Arsalan (Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University)
Hong, Kwonho (Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University)
Kim, Jin Hoi (Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University)
Choi, Youngsok (Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University)
Publication Information
BMB Reports / v.52, no.11, 2019 , pp. 625-634 More about this Journal
Abstract
Severe combined immunodeficiency (SCID) is a group of inherited disorders characterized by compromised T lymphocyte differentiation related to abnormal development of other lymphocytes [i.e., B and/or natural killer (NK) cells], leading to death early in life unless treated immediately with hematopoietic stem cell transplant. Functional NK cells may impact engraftment success of life-saving procedures such as bone marrow transplantation in human SCID patients. Therefore, in animal models, a T cell-/B cell-/NK cell+ environment provides a valuable tool for understanding the function of the innate immune system and for developing targeted NK therapies against human immune diseases. In this review, we focus on underlying mechanisms of human SCID, recent progress in the development of SCID animal models, and utilization of SCID pig model in biomedical sciences. Numerous physiologies in pig are comparable to those in human such as immune system, X-linked heritability, typical T-B+NK- cellular phenotype, and anatomy. Due to analogous features of pig to those of human, studies have found that immunodeficient pig is the most appropriate model for human SCID.
Keywords
Genetic mutations; Pig immunodeficient model; Regenerative medicine; SCID; Xenotransplantation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Noguchi M, Yi H, Rosenblatt HM et al (1993) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147-157   DOI
2 Russell SM, Tayebi N, Nakajima H et al (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797-800   DOI
3 Takeshita T, Asao H, Ohtani K et al (1992) Cloning of the gamma chain of the human IL-2 receptor. Science 257, 379-382   DOI
4 Kondo M, Takeshita T, Ishii N et al (1993) Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4. Science 262, 1874-1877   DOI
5 Noguchi M, Nakamura Y, Russell SM et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262, 1877-1880   DOI
6 Giri JG, Ahdieh M, Eisenman J et al (1994) Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J 13, 2822-2830   DOI
7 Asao H, Okuyama C, Kumaki S et al (2001) Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 167, 1-5   DOI
8 Tasher D and Dalal I (2012) The genetic basis of severe combined immunodeficiency and its variants. Appl Clin Genet 5, 67-80   DOI
9 Powell EJ, Cunnick JE and Tuggle CK (2017) SCID pigs: An emerging large animal NK model. J Rare Dis Res Treat 2, 1-6
10 Colonna M (2018) Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity 48, 1104-1117   DOI
11 Leonard WJ (2001) Cytokines and immunodeficiency diseases. Nat Rev Immunol 1, 200-208   DOI
12 Ito R, Takahashi T, Katano I and Ito M (2012) Current advances in humanized mouse models. Cell Mol Immunol 9, 208-214   DOI
13 Ito T, Sendai Y, Yamazaki S et al (2014) Generation of recombination activating gene-1-deficient neonatal piglets: a model of T and B cell deficient severe combined immune deficiency. PLoS One 9, e113833   DOI
14 Shiow LR, Paris K, Akana MC, Cyster JG, Sorensen RU and Puck JM (2009) Severe combined immunodeficiency (SCID) and attention deficit hyperactivity disorder (ADHD) associated with a Coronin-1A mutation and a chromosome 16p11.2 deletion. Clin Immunol 131, 24-30   DOI
15 Moshous D, Martin E, Carpentier W et al (2013) Wholeexome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol 131, 1594-1603   DOI
16 Mace EM and Orange JS (2014) Lytic immune synapse function requires filamentous actin deconstruction by Coronin 1A. Proc Natl Acad Sci U S A 111, 6708-6713   DOI
17 McKusick VA, Eldridge R, Hostetler JA, Ruangwit U and Egeland JA (1965) Dwarfism in the amish. Ii. cartilage-hair hypoplasia. Bull Johns Hopkins Hosp 116, 285-326
18 Thiel CT and Rauch A (2011) The molecular basis of the cartilage-hair hypoplasia-anauxetic dysplasia spectrum. Best Pract Res Clin Endocrinol Metab 25, 131-142   DOI
19 Ryu J, Prather RS and Lee K (2018) Use of gene-editing technology to introduce targeted modifications in pigs. J Anim Sci Biotechnol 9, 5   DOI
20 Gaj T, Gersbach CA and Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31, 397-405   DOI
21 Doyon Y, McCammon JM, Miller JC et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26, 702-708   DOI
22 Hauschild J, Petersen B, Santiago Y et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108, 12013-12017   DOI
23 Meyer M, de Angelis MH, Wurst W and Kuhn R (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A 107, 15022-15026   DOI
24 Geurts AM, Cost GJ, Freyvert Y et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433   DOI
25 Zschemisch NH, Glage S, Wedekind D et al (2012) Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat. BMC Immunol 13, 60   DOI
26 Yang D, Yang H, Li W et al (2011) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21, 979-982   DOI
27 Lutz AJ, Li P, Estrada JL et al (2013) Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20, 27-35   DOI
28 Whyte JJ, Zhao J, Wells KD et al (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78, 2   DOI
29 Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e82   DOI
30 Smith-Garvin JE, Koretzky GA and Jordan MS (2009) T cell activation. Annu Rev Immunol 27, 591-619   DOI
31 Tchilian EZ, Wallace DL, Wells RS, Flower DR, Morgan G and Beverley PC (2001) A deletion in the gene encoding the CD45 antigen in a patient with SCID. J Immunol 166, 1308-1313   DOI
32 Oettinger MA (1999) V(D)J recombination: on the cutting edge. Curr Opin Cell Biol 11, 325-329   DOI
33 de Villartay JP (2015) Congenital defects in V(D)J recombination. Br Med Bull 114, 157-167   DOI
34 Wiler R, Leber R, Moore BB, VanDyk LF, Perryman LE and Meek K (1995) Equine severe combined immunodeficiency: a defect in V(D)J recombination and DNAdependent protein kinase activity. Proc Natl Acad Sci U S A 92, 11485-11489   DOI
35 Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S and Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869-877   DOI
36 Villa A, Sobacchi C, Notarangelo LD et al (2001) V(D)J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood 97, 81-88   DOI
37 Shinkai Y, Rathbun G, Lam KP et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855-867   DOI
38 Menoret S, Fontaniere S, Jantz D et al (2013) Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J 27, 703-711   DOI
39 Song J, Zhong J, Guo X et al (2013) Generation of RAG 1-and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res 23, 1059-1062   DOI
40 Sugamura K, Asao H, Kondo M et al (1996) The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 14, 179-205   DOI
41 Malek TR and Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4, 665-674   DOI
42 Hendriks WT, Jiang X, Daheron L and Cowan CA (2015) TALEN- and CRISPR/Cas9-mediated gene editing in human pluripotent stem cells using lipid-based transfection. Curr Protoc Stem Cell Biol 34, 5B 3 1-25
43 Ghoreschi K, Laurence A and O'Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228, 273-287   DOI
44 Peter HH, Friedrich W, Dopfer R et al (1983) NK cell function in severe combined immunodeficiency (SCID): evidence of a common T and NK cell defect in some but not all SCID patients. J Immunol 131, 2332-2339
45 Lewis SM (1994) The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol 56, 27-150   DOI
46 Hockemeyer D, Wang H, Kiani S et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29, 731-734   DOI
47 Choi YJ, Kim E, Reza A et al (2017) Recombination activating gene-2(null) severe combined immunodeficient pigs and mice engraft human induced pluripotent stem cells differently. Oncotarget 8, 69398-69407   DOI
48 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821   DOI
49 Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823   DOI
50 Wang Y, Fan N, Song J et al (2014) Generation of knockout rabbits using transcription activator-like effector nucleases. Cell Regen (Lond) 3, 3   DOI
51 Huang J, Guo X, Fan N et al (2014) RAG1/2 knockout pigs with severe combined immunodeficiency. J Immunol 193, 1496-1503   DOI
52 Winandy S, Wu L, Wang JH and Georgopoulos K (1999) Pre-T cell receptor (TCR) and TCR-controlled checkpoints in T cell differentiation are set by Ikaros. J Exp Med 190, 1039-1048   DOI
53 Schuetz C, Neven B, Dvorak CC et al (2014) SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood 123, 281-289   DOI
54 Buckley RH, Schiff RI, Schiff SE et al (1997) Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr 130, 378-387   DOI
55 Geha RS, Notarangelo LD, Casanova JL et al (2007) Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol 120, 776-794   DOI
56 Nemazee D (2006) Receptor editing in lymphocyte development and central tolerance. Nat Rev Immunol 6, 728-740   DOI
57 Buckley RH (2004) Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol 22, 625-655   DOI
58 Cossu F (2010) Genetics of SCID. Ital J Pediatr 36, 76   DOI
59 Macchi P, Villa A, Giliani S et al (1995) Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65-68   DOI
60 Hai T, Teng F, Guo R, Li W and Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24, 372-375   DOI
61 Whitworth KM, Lee K, Benne JA et al (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91, 78   DOI
62 Watanabe M, Nakano K, Matsunari H et al (2013) Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PLoS One 8, e76478   DOI
63 Niu D, Wei HJ, Lin L et al (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303-1307   DOI
64 Suzuki S, Iwamoto M, Saito Y et al (2012) Il2rg genetargeted severe combined immunodeficiency pigs. Cell Stem Cell 10, 753-758   DOI
65 Bauer TR Jr, Adler RL and Hickstein DD (2009) Potential large animal models for gene therapy of human genetic diseases of immune and blood cell systems. ILAR J 50, 168-186   DOI
66 Kang JT, Cho B, Ryu J et al (2016) Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs. Reprod Biol Endocrinol 14, 74   DOI
67 Lee K, Kwon DN, Ezashi T et al (2014) Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci U S A 111, 7260-7265   DOI
68 Dawson HD, Loveland JE, Pascal G et al (2013) Structural and functional annotation of the porcine immunome. BMC Genomics 14, 332   DOI
69 Meurens F, Summerfield A, Nauwynck H, Saif L and Gerdts V (2012) The pig: a model for human infectious diseases. Trends Microbiol 20, 50-57   DOI
70 Otsu M, Steinberg M, Ferrand C et al (2002) Reconstitution of lymphoid development and function in ZAP-70-deficient mice following gene transfer into bone marrow cells. Blood 100, 1248-1256   DOI
71 Legname G, Seddon B, Lovatt M et al (2000) Inducible expression of a p56Lck transgene reveals a central role for Lck in the differentiation of CD4 SP thymocytes. Immunity 12, 537-546   DOI
72 Goldman FD, Ballas ZK, Schutte BC et al (1998) Defective expression of p56lck in an infant with severe combined immunodeficiency. J Clin Invest 102, 421-429   DOI
73 Hubert P, Bergeron F, Ferreira V et al (2000) Defective p56Lck activity in T cells from an adult patient with idiopathic CD4+ lymphocytopenia. Int Immunol 12, 449-457   DOI
74 Rathmell JC and Thompson CB (2002) Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 109 Suppl, S97-107   DOI
75 Hershfield MS (2003) Genotype is an important determinant of phenotype in adenosine deaminase deficiency. Curr Opin Immunol 15, 571-577   DOI
76 Pannicke U, Honig M, Hess I et al (2009) Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41, 101-105   DOI
77 Lagresle-Peyrou C, Six EM, Picard C et al (2009) Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet 41, 106-111   DOI
78 Noma T (2005) Dynamics of nucleotide metabolism as a supporter of life phenomena. J Med Invest 52, 127-136   DOI
79 Yagi H, Matsumoto M, Nakamura M et al (1996) Defect of thymocyte emigration in a T cell deficiency strain (CTS) of the mouse. J Immunol 157, 3412-3419
80 Panayiotou C, Solaroli N, Xu Y, Johansson M and Karlsson A (2011) The characterization of human adenylate kinases 7 and 8 demonstrates differences in kinetic parameters and structural organization among the family of adenylate kinase isoenzymes. Biochem J 433, 527-534   DOI
81 Shiow LR, Roadcap DW, Paris K et al (2008) The actin regulator coronin 1A is mutant in a thymic egressdeficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol 9, 1307-1315   DOI
82 Mueller P, Massner J, Jayachandran R et al (2008) Regulation of T cell survival through coronin-1-mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nat Immunol 9, 424-431   DOI
83 Haraldsson MK, Louis-Dit-Sully CA, Lawson BR et al (2008) The lupus-related Lmb3 locus contains a diseasesuppressing Coronin-1A gene mutation. Immunity 28, 40-51   DOI