Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines |
Iqbal, Muhammad Arsalan
(Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University)
Hong, Kwonho (Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University) Kim, Jin Hoi (Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University) Choi, Youngsok (Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University) |
1 | Noguchi M, Yi H, Rosenblatt HM et al (1993) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147-157 DOI |
2 | Russell SM, Tayebi N, Nakajima H et al (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797-800 DOI |
3 | Takeshita T, Asao H, Ohtani K et al (1992) Cloning of the gamma chain of the human IL-2 receptor. Science 257, 379-382 DOI |
4 | Kondo M, Takeshita T, Ishii N et al (1993) Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4. Science 262, 1874-1877 DOI |
5 | Noguchi M, Nakamura Y, Russell SM et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262, 1877-1880 DOI |
6 | Giri JG, Ahdieh M, Eisenman J et al (1994) Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J 13, 2822-2830 DOI |
7 | Asao H, Okuyama C, Kumaki S et al (2001) Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 167, 1-5 DOI |
8 | Tasher D and Dalal I (2012) The genetic basis of severe combined immunodeficiency and its variants. Appl Clin Genet 5, 67-80 DOI |
9 | Powell EJ, Cunnick JE and Tuggle CK (2017) SCID pigs: An emerging large animal NK model. J Rare Dis Res Treat 2, 1-6 |
10 | Colonna M (2018) Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity 48, 1104-1117 DOI |
11 | Leonard WJ (2001) Cytokines and immunodeficiency diseases. Nat Rev Immunol 1, 200-208 DOI |
12 | Ito R, Takahashi T, Katano I and Ito M (2012) Current advances in humanized mouse models. Cell Mol Immunol 9, 208-214 DOI |
13 | Ito T, Sendai Y, Yamazaki S et al (2014) Generation of recombination activating gene-1-deficient neonatal piglets: a model of T and B cell deficient severe combined immune deficiency. PLoS One 9, e113833 DOI |
14 | Shiow LR, Paris K, Akana MC, Cyster JG, Sorensen RU and Puck JM (2009) Severe combined immunodeficiency (SCID) and attention deficit hyperactivity disorder (ADHD) associated with a Coronin-1A mutation and a chromosome 16p11.2 deletion. Clin Immunol 131, 24-30 DOI |
15 | Moshous D, Martin E, Carpentier W et al (2013) Wholeexome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol 131, 1594-1603 DOI |
16 | Mace EM and Orange JS (2014) Lytic immune synapse function requires filamentous actin deconstruction by Coronin 1A. Proc Natl Acad Sci U S A 111, 6708-6713 DOI |
17 | McKusick VA, Eldridge R, Hostetler JA, Ruangwit U and Egeland JA (1965) Dwarfism in the amish. Ii. cartilage-hair hypoplasia. Bull Johns Hopkins Hosp 116, 285-326 |
18 | Thiel CT and Rauch A (2011) The molecular basis of the cartilage-hair hypoplasia-anauxetic dysplasia spectrum. Best Pract Res Clin Endocrinol Metab 25, 131-142 DOI |
19 | Ryu J, Prather RS and Lee K (2018) Use of gene-editing technology to introduce targeted modifications in pigs. J Anim Sci Biotechnol 9, 5 DOI |
20 | Gaj T, Gersbach CA and Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31, 397-405 DOI |
21 | Doyon Y, McCammon JM, Miller JC et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26, 702-708 DOI |
22 | Hauschild J, Petersen B, Santiago Y et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108, 12013-12017 DOI |
23 | Meyer M, de Angelis MH, Wurst W and Kuhn R (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A 107, 15022-15026 DOI |
24 | Geurts AM, Cost GJ, Freyvert Y et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433 DOI |
25 | Zschemisch NH, Glage S, Wedekind D et al (2012) Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat. BMC Immunol 13, 60 DOI |
26 | Yang D, Yang H, Li W et al (2011) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21, 979-982 DOI |
27 | Lutz AJ, Li P, Estrada JL et al (2013) Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20, 27-35 DOI |
28 | Whyte JJ, Zhao J, Wells KD et al (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78, 2 DOI |
29 | Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e82 DOI |
30 | Smith-Garvin JE, Koretzky GA and Jordan MS (2009) T cell activation. Annu Rev Immunol 27, 591-619 DOI |
31 | Tchilian EZ, Wallace DL, Wells RS, Flower DR, Morgan G and Beverley PC (2001) A deletion in the gene encoding the CD45 antigen in a patient with SCID. J Immunol 166, 1308-1313 DOI |
32 | Oettinger MA (1999) V(D)J recombination: on the cutting edge. Curr Opin Cell Biol 11, 325-329 DOI |
33 | de Villartay JP (2015) Congenital defects in V(D)J recombination. Br Med Bull 114, 157-167 DOI |
34 | Wiler R, Leber R, Moore BB, VanDyk LF, Perryman LE and Meek K (1995) Equine severe combined immunodeficiency: a defect in V(D)J recombination and DNAdependent protein kinase activity. Proc Natl Acad Sci U S A 92, 11485-11489 DOI |
35 | Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S and Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869-877 DOI |
36 | Villa A, Sobacchi C, Notarangelo LD et al (2001) V(D)J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood 97, 81-88 DOI |
37 | Shinkai Y, Rathbun G, Lam KP et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855-867 DOI |
38 | Menoret S, Fontaniere S, Jantz D et al (2013) Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J 27, 703-711 DOI |
39 | Song J, Zhong J, Guo X et al (2013) Generation of RAG 1-and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res 23, 1059-1062 DOI |
40 | Sugamura K, Asao H, Kondo M et al (1996) The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 14, 179-205 DOI |
41 | Malek TR and Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4, 665-674 DOI |
42 | Hendriks WT, Jiang X, Daheron L and Cowan CA (2015) TALEN- and CRISPR/Cas9-mediated gene editing in human pluripotent stem cells using lipid-based transfection. Curr Protoc Stem Cell Biol 34, 5B 3 1-25 |
43 | Ghoreschi K, Laurence A and O'Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228, 273-287 DOI |
44 | Peter HH, Friedrich W, Dopfer R et al (1983) NK cell function in severe combined immunodeficiency (SCID): evidence of a common T and NK cell defect in some but not all SCID patients. J Immunol 131, 2332-2339 |
45 | Lewis SM (1994) The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol 56, 27-150 DOI |
46 | Hockemeyer D, Wang H, Kiani S et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29, 731-734 DOI |
47 | Choi YJ, Kim E, Reza A et al (2017) Recombination activating gene-2(null) severe combined immunodeficient pigs and mice engraft human induced pluripotent stem cells differently. Oncotarget 8, 69398-69407 DOI |
48 | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 DOI |
49 | Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 DOI |
50 | Wang Y, Fan N, Song J et al (2014) Generation of knockout rabbits using transcription activator-like effector nucleases. Cell Regen (Lond) 3, 3 DOI |
51 | Huang J, Guo X, Fan N et al (2014) RAG1/2 knockout pigs with severe combined immunodeficiency. J Immunol 193, 1496-1503 DOI |
52 | Winandy S, Wu L, Wang JH and Georgopoulos K (1999) Pre-T cell receptor (TCR) and TCR-controlled checkpoints in T cell differentiation are set by Ikaros. J Exp Med 190, 1039-1048 DOI |
53 | Schuetz C, Neven B, Dvorak CC et al (2014) SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood 123, 281-289 DOI |
54 | Buckley RH, Schiff RI, Schiff SE et al (1997) Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr 130, 378-387 DOI |
55 | Geha RS, Notarangelo LD, Casanova JL et al (2007) Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol 120, 776-794 DOI |
56 | Nemazee D (2006) Receptor editing in lymphocyte development and central tolerance. Nat Rev Immunol 6, 728-740 DOI |
57 | Buckley RH (2004) Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol 22, 625-655 DOI |
58 | Cossu F (2010) Genetics of SCID. Ital J Pediatr 36, 76 DOI |
59 | Macchi P, Villa A, Giliani S et al (1995) Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65-68 DOI |
60 | Hai T, Teng F, Guo R, Li W and Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24, 372-375 DOI |
61 | Whitworth KM, Lee K, Benne JA et al (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91, 78 DOI |
62 | Watanabe M, Nakano K, Matsunari H et al (2013) Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PLoS One 8, e76478 DOI |
63 | Niu D, Wei HJ, Lin L et al (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303-1307 DOI |
64 | Suzuki S, Iwamoto M, Saito Y et al (2012) Il2rg genetargeted severe combined immunodeficiency pigs. Cell Stem Cell 10, 753-758 DOI |
65 | Bauer TR Jr, Adler RL and Hickstein DD (2009) Potential large animal models for gene therapy of human genetic diseases of immune and blood cell systems. ILAR J 50, 168-186 DOI |
66 | Kang JT, Cho B, Ryu J et al (2016) Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs. Reprod Biol Endocrinol 14, 74 DOI |
67 | Lee K, Kwon DN, Ezashi T et al (2014) Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci U S A 111, 7260-7265 DOI |
68 | Dawson HD, Loveland JE, Pascal G et al (2013) Structural and functional annotation of the porcine immunome. BMC Genomics 14, 332 DOI |
69 | Meurens F, Summerfield A, Nauwynck H, Saif L and Gerdts V (2012) The pig: a model for human infectious diseases. Trends Microbiol 20, 50-57 DOI |
70 | Otsu M, Steinberg M, Ferrand C et al (2002) Reconstitution of lymphoid development and function in ZAP-70-deficient mice following gene transfer into bone marrow cells. Blood 100, 1248-1256 DOI |
71 | Legname G, Seddon B, Lovatt M et al (2000) Inducible expression of a p56Lck transgene reveals a central role for Lck in the differentiation of CD4 SP thymocytes. Immunity 12, 537-546 DOI |
72 | Goldman FD, Ballas ZK, Schutte BC et al (1998) Defective expression of p56lck in an infant with severe combined immunodeficiency. J Clin Invest 102, 421-429 DOI |
73 | Hubert P, Bergeron F, Ferreira V et al (2000) Defective p56Lck activity in T cells from an adult patient with idiopathic CD4+ lymphocytopenia. Int Immunol 12, 449-457 DOI |
74 | Rathmell JC and Thompson CB (2002) Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 109 Suppl, S97-107 DOI |
75 | Hershfield MS (2003) Genotype is an important determinant of phenotype in adenosine deaminase deficiency. Curr Opin Immunol 15, 571-577 DOI |
76 | Pannicke U, Honig M, Hess I et al (2009) Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41, 101-105 DOI |
77 | Lagresle-Peyrou C, Six EM, Picard C et al (2009) Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet 41, 106-111 DOI |
78 | Noma T (2005) Dynamics of nucleotide metabolism as a supporter of life phenomena. J Med Invest 52, 127-136 DOI |
79 | Yagi H, Matsumoto M, Nakamura M et al (1996) Defect of thymocyte emigration in a T cell deficiency strain (CTS) of the mouse. J Immunol 157, 3412-3419 |
80 | Panayiotou C, Solaroli N, Xu Y, Johansson M and Karlsson A (2011) The characterization of human adenylate kinases 7 and 8 demonstrates differences in kinetic parameters and structural organization among the family of adenylate kinase isoenzymes. Biochem J 433, 527-534 DOI |
81 | Shiow LR, Roadcap DW, Paris K et al (2008) The actin regulator coronin 1A is mutant in a thymic egressdeficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol 9, 1307-1315 DOI |
82 | Mueller P, Massner J, Jayachandran R et al (2008) Regulation of T cell survival through coronin-1-mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nat Immunol 9, 424-431 DOI |
83 | Haraldsson MK, Louis-Dit-Sully CA, Lawson BR et al (2008) The lupus-related Lmb3 locus contains a diseasesuppressing Coronin-1A gene mutation. Immunity 28, 40-51 DOI |