• 제목/요약/키워드: human dermal fibroblasts

검색결과 211건 처리시간 0.026초

Extracellular Vesicles Derived from Adipose Stem Cells Alleviate Systemic Sclerosis by Inhibiting TGF-β Pathway

  • Eunae Kim;Hark Kyun Kim;Jae Hoon Sul;Jeongmi Lee;Seung Hyun Baek;Yoonsuk Cho;Jihoon Han;Junsik Kim;Sunyoung Park;Jae Hyung Park;Yong Woo Cho;Dong-Gyu Jo
    • Biomolecules & Therapeutics
    • /
    • 제32권4호
    • /
    • pp.432-441
    • /
    • 2024
  • Systemic sclerosis is an autoimmune disease characterized by inflammatory reactions and fibrosis. Myofibroblasts are considered therapeutic targets for preventing and reversing the pathogenesis of fibrosis in systemic sclerosis. Although the mechanisms that differentiate into myofibroblasts are diverse, transforming growth factor β (TGF-β) is known to be a key mediator of fibrosis in systemic sclerosis. This study investigated the effects of extracellular vesicles derived from human adipose stem cells (ASC-EVs) in an in vivo systemic sclerosis model and in vitro TGF-β1-induced dermal fibroblasts. The therapeutic effects of ASC-EVs on the in vivo systemic sclerosis model were evaluated based on dermal thickness and the number of α-smooth muscle actin (α-SMA)-expressing cells using hematoxylin and eosin staining and immunohistochemistry. Administration of ASC-EVs decreased both the dermal thickness and α-SMA expressing cell number as well as the mRNA levels of fibrotic genes, such as Acta2, Ccn2, Col1a1 and Comp. Additionally, we discovered that ASC-EVs can decrease the expression of α-SMA and CTGF and suppress the TGF-β pathway by inhibiting the activation of SMAD2 in dermal fibroblasts induced by TGF-β1. Finally, TGF-β1-induced dermal fibroblasts underwent selective death through ASC-EVs treatment. These results indicate that ASC-EVs could provide a therapeutic approach for preventing and reversing systemic sclerosis.

Engineering of a Human Skin Equivalent

  • Ghalbzouri Abdoelwaheb El
    • 대한화장품학회지
    • /
    • 제29권2호
    • /
    • pp.105-130
    • /
    • 2003
  • Human skin equivalents, also designated as cultured skin substitute (Boyce and Warden, 2002) or organotypic co-cultures (Maas-Szabowski et al., 1999, 2000, 2003), are three-dimensional systems that are engineered by seeding fibroblasts into a three-dimensional dermal matrix. Such a dermal equivalent is then subsequently seeded with human keratinocytes. After cell attachment, the culture is kept first under submerged condition to allow keratinocyte proliferation. Thereafter, the culture is lifted the air-liquid interface (A/L) to expose the epidermal compartment to the air, and to further induce keratinocyte differentiation. During the air-exposure, nutrients from the medium will diffuse through the underlying dermal substrate towards the epidermal compartment and support keratinocyte proliferation and differentiation. Under these conditions, a HSE is formed that shows high similarity with the native tissue from which it was derived (Figure 1) (Bell et at., 1981; Boyce et al., 1988; Ponec et al., 1997;El Ghalbzouri et al.., 2002).

Effect of Topically Applied Silver Sulfadiazine on Fibroblast Cell Proliferation and Biomechanical Properties of the Wound

  • Lee, Ae-Ri-Cho;Moon, Hee-Kyung
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.855-860
    • /
    • 2003
  • The effect of silver sulfadiazine (SSD) on the proliferation of human dermal fibroblast (HDF) was studied to determine the impact of the drug on the wound healing process and dermal mechanical strength. Human dermal fibroblasts were cultured to 80% confluency using DMEM with 10% FBS and viability of the cell was estimated using neutral red assay. In addition, the $2^{nd}$ degree burn wound was prepared on the anterior part of rabbit ear skin and dressings containing SSD were applied for 96 h. Presence of inflammatory cells and degree of re-epithelialization were investigated in the wound. After 15 day of the induction of burn wounds, the treated area was excised and dermal mechanical strength was quantitatively measured with a constant speed tensiometer. SSD was found to be highly cyto-toxic in cultured HDF cells. The topical application of SSD (2%) could control the infection as evidenced by the lack of accumulation of inflammatory cells in histological evaluation. Therefore, these observations suggested that the impairment of dermal regeneration and decreased mechanical strength of dermal tissue was resulted from the cyto-toxic effect of SSD on dermal cells. Since the decreased mechanical strength may lead to reduction in resilience, toughness and maximum extension of the tissue, the identification of optimum dose for SSD that limits infection while minimizes the cyto-toxic effect may be clinically relevant.

에스트로겐이 진피섬유아세포의 증식 및 교원질합성에 미치는 영향의 다양성 (Variable Effect of Estrogen on Fibroblast Proliferation and Collagen Synthesis by Gender and Age)

  • 신승한;원창훈;한승규;김우경
    • Archives of Plastic Surgery
    • /
    • 제32권3호
    • /
    • pp.363-368
    • /
    • 2005
  • It was assumed that the effect of estrogen on wound healing would be variable according to patient's gender and age since estrogen is a sex steroid. This study was designed to determine the variability of the effect of estrogen on proliferation of human dermal fibroblasts and collagen synthesis which are most important in wound healing considering patient's gender and age. Fibroblasts were isolated from the dermis of female patients in premenstrual, menstrual, or postmenopausal age group and that of male patients. The isolated fibroblasts were cultivated in the presence of estrogen($1.0{\mu}g/ml$). The cells were seeded at $5.0{\times}10^3cell/well$ in Dulbecco's Modified Eagle's Medium/Ham's F-12 nutrient including 5% fetal bovine serum in 96-well plates. The cells were incubated for 3 days. For fibroblast proliferation MTT assay method was used. To measure the production of collagen, the collagen type I carboxy- terminal propeptide enzyme immunoassay was carried out. Estrogen stimulated the proliferation of fibroblasts in female patients, but not in male patients. The greatest cell proliferation and collagen synthesis was seen at women in menstrual and postmenopausal age. These results demonstrated that effects of estrogen on dermal fibroblast proliferation and collagen synthesis were variable with gender and age.

자외선B 노출로 인해 손상된 피부세포에 대한 돌배나무잎 추출물의 보호효과 (Protective Effects of Pyrus pyrifolia NAKAI Leaf Extracts on UVB-induced Toxicity in Human Dermal Fibroblasts)

  • 고아라;최송이;김용웅;박건혁
    • 대한화장품학회지
    • /
    • 제42권1호
    • /
    • pp.87-94
    • /
    • 2016
  • 피부 손상은 주로 자외선, 열, 담배 등과 같은 환경적 요인으로부터 초래되는데, 이는 활성산소종의 과생성으로 인한 피부노화와 연관이 있는 것으로 알려져 있다. 돌배(Pyrus pyrifolia NAKAI)는 전 세계적으로 많이 소비되는 과일로써 항암, 항산화, 항염증효과가 알려져 있다. 본 연구에서는 돌배나무잎 추출물(Pyrus pyrifolia leaf extract, PPE)의 ultraviolet B (UVB)스트레스에 대한 피부 섬유아세포 보호효과를 검증하였다. Lactate dehydrogenase assay와 DCF-DA를 이용한 정성분석 실험은 PPE가 인간의 섬유아세포에서 UVB 스트레스에 의해 유발된 세포독성 및 과생성된 활성산소종을 농도 의존적으로 억제할 뿐만 아니라, 미토콘드리아 기능저하, 막전위 저하, 그리고 세포사멸과정의 핵심 인자인 caspase-3 활성도 유의하게 억제함을 보여주었다. 결론적으로, PPE는 UVB스트레스에 의해 과생성된 활성산소종을 억제시켰으며, 이로 인해 생기는 피부세포 사멸을 효과적으로 저해함을 확인하였다.

사람 섬유아세포에서 UVB 조사에 대한 능소화 추출물의 항산화 효과 (Effect of Campsis grandiflora on Antioxidative Activity in UVB-irradiated Human Dermal Fibroblasts)

  • 김진화;이범천;;표형배
    • 약학회지
    • /
    • 제49권2호
    • /
    • pp.174-179
    • /
    • 2005
  • The human skin is constantly exposed to environmental irritants such as ultraviolet, smoke, chemicals. Free radicals and reactive oxygen species (ROS) caused by these environmen tal facts play critical roles in cellular damage. These irritants are in themselves damaging to the skin structure but they also participate the immensely complex inflammatory reaction. The purpose of this study was to investigate the skin cell protective effect of Campsis grandiflora extract on the UVB-irradiated human dermal fibroblasts (HDFs). We tested free radical and superoxide scavenging effect in vitro. C. grandiflora extracts had potent radical scavenging effect by 82% at $100{\mu}g/ml$, respectively. For testing intracellular ROS scavenging activity the cultured HDFs were analyzed by increase in DCF fluorescence upon exposure to UVB 20 $MJ/cm^2$ after treatment of C.grandiflora extracts. The results showed that oxidation of CM-DCFDA was inhibited by C.grandiflora extracts effectively and C.grandiflora extracts has a potent free radical scavenging activity in UVB- irradiated HDFs. In ROS imaging using confocal microscope we visualized DCF fluorescence in HDFs directly. In conclusion, our results suggest that C.grandiflora can be effectively used for the prevention of UV-induced adverse skin reactions such as radical production, and skin cell damage.

Scaffold상에 식립한 사람치주인대섬유모세포를 통한 치주조직공학 (Periodontal tissue engineering by hPDLF seeding on scaffold)

  • 김성신;김병옥;박주철;장현선
    • Journal of Periodontal and Implant Science
    • /
    • 제36권3호
    • /
    • pp.757-765
    • /
    • 2006
  • Human periodontal ligament fibroblasts (hPDLF) are very important for curing the periodontal tissue because they can be differentiated into various cells. A tissue engineering approach using a cell-scaffold is essential for comprehending today's periodontal tissue regeneration procedure. This study examined the possibility of using an acellular dermal matrix as a scaffold for human periodontalligament fibroblast (hPDLF). The hPDLF was isolated from the middle third of the root of periodontally healthy teeth extracted for orthodontic reasons. The cells were cultured in a medium containing Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum at $37^{\circ}C$ in humidified air with 5% $CO_2$. The acellular dermal matrix(ADM) was provided by the US tissue banks(USA). Second passage cells were used in this study. The hPDLF cells were cultured with the acellular dermal matrix for 2 days, and the dermal matrix cultured by the hPDLF was transferred to a new petri dish and used as the experimental group. The control group was cultured without the acellular dermal matrix, The control and experimental cells were cultured for six weeks. The hPDLF cultured on the acellular dermal matrix was observed by Transmission Electron microscopy (TEM). Electron micrography shows that the hPDLF was proliferated on the acellular dermal matrix. This study suggests that the acellular dermal matrix can be used as a scaffold for hPDLF.

Development of a highly effective recombinant protein from human collagen type III Alpha 1 (COL3A1) to enhance human skin cell functionality

  • Young Un Kim;HyunJoon Gi;Eun Kyung Jeong;Seokwon Han;Woo-Young Seo;Young Jun Kim;Sang Bae Lee;KyeongJin Kim
    • BMB Reports
    • /
    • 제57권9호
    • /
    • pp.424-429
    • /
    • 2024
  • Collagen type III, a member of the fibrillar collagen group, is a major component of the extracellular matrix in various internal organs, the vascular systems, and skin. It is essential to maintain the structural integrity and functionality of these tissues, and plays a significant role in wound healing, often found alongside collagen type I. Despite being the second most abundant collagen in human tissues after type I, its biological functions on various skin properties have not been thoroughly studied. In this study, we have isolated and developed an effective recombinant protein derived from human collagen type III alpha 1 chain (hCOL3A1). Our findings demonstrate that the recombinant proteins hCOL3A1-THR-M1 and M4 stimulate cell proliferation and collagen biosynthesis in human dermal fibroblasts (HDFs), and enhance wound healing. Notably, hCOL3A1-THR-M1 (referred to as HUCOLLATIN3) specifically penetrates both the epidermal and dermal layers in a full-thickness skin model. These results collectively indicate that hCOL3A1-THR-M1 holds promise as a potential biomaterial to prevent skin aging.

Proteomic analyses reveal that ginsenoside Rg3(S) partially reverses cellular senescence in human dermal fibroblasts by inducing peroxiredoxin

  • Jang, Ik-Soon;Jo, Eunbi;Park, Soo Jung;Baek, Su Jeong;Hwang, In-Hu;Kang, Hyun Mi;Lee, Je-Ho;Kwon, Joseph;Son, Junik;Kwon, Ho Jeong;Choi, Jong-Soon
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.50-57
    • /
    • 2020
  • Background: The cellular senescence of primary cultured cells is an irreversible process characterized by growth arrest. Restoration of senescence by ginsenosides has not been explored so far. Rg3(S) treatment markedly decreased senescence-associated β-galactosidase activity and intracellular reactive oxygen species levels in senescent human dermal fibroblasts (HDFs). However, the underlying mechanism of this effect of Rg3(S) on the senescent HDFs remains unknown. Methods: We performed a label-free quantitative proteomics to identify the altered proteins in Rg3(S)-treated senescent HDFs. Upregulated proteins induced by Rg3(S) were validated by real-time polymerase chain reaction and immunoblot analyses. Results: Finally, 157 human proteins were identified, and variable peroxiredoxin (PRDX) isotypes were highly implicated by network analyses. Among them, the mitochondrial PRDX3 was transcriptionally and translationally increased in response to Rg3(S) treatment in senescent HDFs in a time-dependent manner. Conclusion: Our proteomic approach provides insights into the partial reversing effect of Rg3 on senescent HDFs through induction of antioxidant enzymes, particularly PRDX3.

Anti-photoaging and anti-oxidative activities of natural killer cell conditioned medium following UV-B irradiation of human dermal fibroblasts and a reconstructed skin model

  • Sung‑Eun Lee;Tae‑Rin Kwon;Jong Hwan Kim;Byung‑Chul Lee;Chang Taek Oh;Minju Im;Kyeong Hwang;Sang Hoon Paik;Seungryel Han;Jeom‑Yong Kim;Beom Joon Kim
    • International Journal of Molecular Medicine
    • /
    • 제44권5호
    • /
    • pp.1641-1652
    • /
    • 2019
  • Conditioned media from various sources comprise numerous growth factors and cytokines and are known to promote the regeneration of damaged tissues. Among these, natural killer cell conditioned medium (NK-CdM) has been shown to stimulate collagen synthesis and the migration of fibroblasts during the wound healing process. With a long-term aim of developing a treatment for skin photoaging, the ability of NK-CdM to prevent ultraviolet-B (UV-B) damage was assessed in neonatal human dermal fibroblasts (NHDFs) and an in vitro reconstructed skin model. The factors present in NK-CdM were profiled using an antibody array analysis. Protein and mRNA levels in UV-B exposed NHDFs treated with NK-CdM were measured by western blotting and quantitative reverse transcription-PCR, respectively. The total antioxidant capacity of NK-CdM was determined to assess its ability to suppress reactive oxygen species. The anti-photoaging effect of NK-CdM was also assessed in a 3D reconstituted human full skin model. NK-CdM induced proliferation of UV-B-treated NHDFs, increased procollagen expression, and decreased matrix metalloproteinase (MMP)-1 expression. NK-CdM also exhibited a potent antioxidant activity as measured by the total antioxidant capacity. NK-CdM inhibited UV-B-induced collagen degradation by inactivating MAPK signaling. NK-CdM also elicited potential anti-wrinkle effects by inhibiting the UV-B-induced increase in MMP-1 expression levels in a 3D reconstituted human full skin model. Taken together, the suppression of both UV-B-induced MMP-1 expression and JNK activation by NK-CdM suggests NK-CdM as a possible candidate anti-skin aging agent.