• Title/Summary/Keyword: human colorectal cancer

Search Result 295, Processing Time 0.024 seconds

Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective

  • Cho, Jeonghee
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.133-141
    • /
    • 2020
  • The epidermal growth factor receptor (EGFR), a member of the ErbB family (EGFR, ErbB2, ErbB3 and ErbB4), plays a crucial role in regulating various cellular responses such as proliferation, differentiation, and survival. As a result, aberrant activation of EGFR, mostly mediated through different classes of genomic alterations occurring within EGFR, is closely associated with the pathogenesis of numerous human cancers including lung adenocarcinoma, glioblastoma, and colorectal cancer. Thus, specific suppression of oncogenic activity of mutant EGFR with its targeted drugs has been routinely used in the clinic as a very effective anti-cancer strategy in treating a subset of tumors driven by such oncogenic EGFR mutants. However, the clinical efficacy of EGFR-targeted therapy does not last long due to several resistance mechanisms that emerge in the patients following the drug treatment. Thus, there is an urgent need for the development of novel therapeutic tactics specifically targeting mutant EGFR with the focus on the unique biological features of various mutant EGFR. Regarding this point, our review specifically emphasizes the recent findings about distinct requirements of receptor dimerization and autophosphorylation, which are critical steps for enzymatic activation of EGFR and signaling cascades, respectively, among wildtype and mutant EGFR and further discuss their clinical significance. In addition, the molecular mechanisms regulating EGFR dimerization and enzymatic activity by a key negative feedback inhibitor Mig6 as well as the clinical use for developing potential novel drugs targeting it are described in this review.

Effect of Cnidii Rhizoma on Phase II Enzyme and Ornithine Decarboxylase Activities (천궁이 Phase II 효소 유도와 Ornithine Decarboxylase 활성에 미치는 영향)

  • Shon, Yun-Hee;Kim, Mee-Kyung;Cho, Hyun-Jung;Nam, Kyung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1572-1575
    • /
    • 2006
  • Water extract from Cnidii Rhizoma (CRW) was tested for colon cancer chemopreventive activity by measuring the induction of phase II detoxification enzyme activity [quinone reductase (QR) and glutathione S-transferase (GST)] and glutathion (GSH) levels and ornithine decarboxylase (ODC) activity in cultured human colorectal adenocarcinoma HT-29 cells. CRW inhibited cell proliferation in cultured HT-29 cells. CRW induced QR activity in a dose-dependent manner in a concentration range of 0.1${\sim}$5.0 $mg/m{\ell}$. GST activity was also induced with the treatment of CRW in HT-29 cells. In addition GSH levels was increased with CRW. CRW inhibited ODC activity, a key enzyme of polyamine biosynthesis, which is enhanced in tumor promotion. These results suggest that CRW has colon cancer chemopreventive activity by increasing phase II enzyme activity and GSH levels and inhibiting ODC activity in vitro.

Expression of MiR200a, miR93, Metastasis-related Gene RECK and MMP2/MMP9 in Human Cervical Carcinoma - Relationship with Prognosis

  • Wang, Ling;Wang, Qiang;Li, He-Lian;Han, Li-Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.2113-2118
    • /
    • 2013
  • Aim and Background: Cervical cancer remains the third most common cancer in women globally after breast and colorectal cancer. Well-characterized biomarkers are necessary for early diagnosis and to predict metastatic progression and effective therapy. MiRNAs can regulate gene expression, cell growth, differentiation and apoptosis by targeting mRNAs for translational repression or degradation in tumor cells. The present study was conducted to assess expression of miR93, miR200a, RECK, MMP2, MMP9 in invasive cervical carcinoma, and analyze their clinical significance. Method: A total of 116 patients with invasive cervical carcinoma and 100 patients undergoing hysterectomy for benign lesions were retrospectively examined. Quantitative real-time PCR was performed to determine expression of miR93 and miR200a while RECK, MMP2, MMP9 and MVD were assessed by immunohistochemical staining. Results: Cervical carcinoma patients demonstrated up-regulation of miR-93, miR-200a, MMP2 and MMP9, with down-regulation of RECK as compared to benign lesion tissues. RECK was significantly inversely related to invasion and lymphatic metastasis. The 5-year survival rate for patients with strong RECK expression was significantly higher than that with weakly expressing tumors. Conclusion: MiR-93 and miR-200a are associated with metastasis and invasion of cervical carcinoma. Thus together with RECK they are potential prognostic markers for cervical carcinoma. RECK cooperating with MMP2, MMP9 expression is a significant prognostic factor correlated with long-term survival for patients with invasive cervical carcinoma.

Influence of 17β-Estradiol on 15-Deoxy-Δ12,14 Prostaglandin J2 -Induced Apoptosis in MCF-7 and MDA-MB-231 Cells

  • Yaacob, Nik Soriani;Nasir, Rabail;Norazmi, Mohd Nor
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6761-6767
    • /
    • 2013
  • The nuclear receptor, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), is expressed in various cancer cells including breast, prostate, colorectal and cervical examples. An endogenous ligand of $PPAR{\gamma}$, 15-deoxy-${\Delta}^{12,14}$ prostaglandin $J_2$ (PGJ2), is emerging as a potent anticancer agent but the exact mechanism has not been fully elucidated, especially in breast cancer. The present study compared the anticancer effects of PGJ2 on estrogen receptor alpha ($ER{\alpha}$)-positive (MCF-7) and $ER{\alpha}$-negative (MDA-MB-231) human breast cancer cells. Based on the reported signalling cross-talk between $ER{\alpha}$ and $ER{\alpha}$, the effect of the $ER{\alpha}$ ligand, $17{\beta}$-estradiol (E2) on the anticancer activities of PGJ2 in both types of cells was also explored. Here we report that PGJ2 inhibited proliferation of both MCF-7 and MDA-MB-231 cells by inducing apoptotic cell death with active involvement of mitochondria. The presence of E2 potentiated PGJ2-induced apoptosis in MCF-7, but not in MDA-MB-231 cells. The $ER{\alpha}$ antagonist, GW9662, failed to block PGJ2-induced activities but potentiated its effects in MCF-7 cells, instead. Interestingly, GW9662 also proved capable of inducing apoptotic cell death. It can be concluded that E2 enhances $ER{\alpha}$-independent anticancer effects of PGJ2 in the presence of its receptor.

Harmal Extract Induces Apoptosis of HCT116 Human Colon Cancer Cells, Mediated by Inhibition of Nuclear Factor-κB and Activator Protein-1 Signaling Pathways and Induction of Cytoprotective Genes

  • Elkady, Ayman I;Hussein, Rania A;El-Assouli, Sufian M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1947-1959
    • /
    • 2016
  • Background: Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the second most common type of cancer worldwide in both men and women. It accounts yearly for approximately 9% of all new cases of cancers. Furthermore, the current chemotherapeutic regimens seem unsatisfactory, so that exploration of novel therapeutic modalities is needed. The present study was undertaken to investigate the inhibitory effects of a crude alkaloid extract (CAERS) of a medicinal herb, Rhazya stricta, on proliferation of CRC HCT116 cells and to elucidate mechanisms of action. To achieve these aims, we utilized MTT, comet, DNA laddering and gene reporter assays, along with Western blot and RT-PCR analyses. Results: We found that CAERS inhibited cell proliferation and induced apoptotic cell death in HCT116 cells. Hallmarks of morphological and biochemical signs of apoptosis were clearly evident. CAERS down-regulated DNA-binding and transcriptional activities of NF-${\kappa}B$ and AP-1 proteins, while up-regulating expression of the Nrf-2 protein. It also down-regulated expression levels of the ERK MAPK, Bcl-2, cyclin D1, CDK-4, survivin and VEGF and up-regulated levels of Bax, caspase-3/7 and -9, p53, p21, Nrf-2. Markedly, it promoted mRNA expression levels of cytoprotective genes including the hemeoxygenase-1, NAD(P)H quinine oxidoreductase 1 and UDP-glucuronyltransferase. Conclusions: These findings indicate that CAERS exerts antiproliferative action on CRC cells through induction of apoptotic mechanisms, and suggest CAERS could be a promising agent for studying and developing novel chemotherapeutic agents aimed at novel molecular targets for the treatment of CRC.

In Vitro Antitumor Properties of an Isolate from Leaves of Cassia alata L

  • Olarte, Elizabeth Iglesias;Herrera, Annabelle Aliga;Villasenor, Irene Manese;Jacinto, Sonia Donaldo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3191-3196
    • /
    • 2013
  • Leaf extracts of Cassia alata L (akapulko), traditionally used for treatment of a variety of diseases, were evaluated for their potential antitumor properties in vitro. MTT assays were used to examine the cytotoxic effects of crude extracts on five human cancer cell lines, namely MCF-7, derived from a breast carcinoma, SK-BR-3, another breast carcinoma, T24 a bladder carcinoma, Col 2, a colorectal carcinoma, and A549, a nonsmall cell lung adenocarcinoma. Hexane extracts showed remarkable cytotoxicity against MCF-7, T24, and Col 2 in a dose-dependent manner. This observation was confirmed by morphological investigation using light microscopy. Further bioassay-directed fractionation of the cytotoxic extract led to the isolation of a TLC-pure isolate labeled as f6l. Isolate f6l was further evaluated using MTT assay and morphological and biochemical investigations, which likewise showed selectivity to MCF-7, T24, and Col 2 cells with $IC_{50}$ values of 16, 17, and 17 ${\mu}g/ml$, respectively. Isolate f6l, however, showed no cytotoxicity towards the non-cancer Chinese hamster ovarian cell line (CHO-AA8). Cytochemical investigation using DAPI staining and biochemical investigation using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-a method used to detect DNA fragmentation-together with caspase assay, demonstrated apoptotic cell death. Spectral characterization of isolate f6l revealed that it contained polyunsaturated fatty acid esters. Considering the cytotoxicity profile and its mode of action, f6l might represent a new promising compound with potential for development as an anticancer drug with low or no toxicity to non-cancer cells used in this study.

Korean Red Ginseng extract reduces hypoxia-induced epithelial-mesenchymal transition by repressing NF-κB and ERK1/2 pathways in colon cancer

  • Kim, Eui Joo;Kwon, Kwang An;Lee, Young Eun;Kim, Ju Hyun;Kim, Se-Hee;Kim, Jung Ho
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.288-297
    • /
    • 2018
  • Background: The incidence of colorectal cancer (CRC) is increasing, with metastasis of newly diagnosed CRC reported in a large proportion of patients. However, the effect of Korean Red Ginseng extracts (KRGE) on epithelial to mesenchymal transition (EMT) in CRC is unknown. Therefore, we examined the mechanisms by which KRGE regulates EMT of CRC in hypoxic conditions. Methods: Human CRC cell lines HT29 and HCT116 were incubated under hypoxic (1% oxygen) and normoxic (21% oxygen) conditions. Western blot analysis and real-time PCR were used to evaluate the expression of EMT markers in the presence of KRGE. Furthermore, we performed scratched wound healing, transwell migration, and invasion assays to monitor whether KRGE affects migratory and invasive abilities of CRC cells under hypoxic conditions. Results: KRGE-treated HT29 and HCT116 cells displayed attenuated vascular endothelial growth factor (VEGF) mRNA levels and hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) protein expression under hypoxic conditions. KRGE repressed Snail, Slug, and Twist mRNA expression and integrin ${\alpha}V{\beta}6$ protein levels. Furthermore, hypoxia-repressed E-cadherin was restored in KRGE-treated cells; KRGE blocked the invasion and migration of colon cancer cells by repressing $NF-{\kappa}B$ and ERK1/2 pathways in hypoxia. Conclusions: KRGE inhibits hypoxia-induced EMT by repressing $NF-{\kappa}B$ and ERK1/2 pathways in colon cancer cells.

Antioxidant and anticancer activities of Adenophora triphylla leaf and root extracts (새싹 잔대 잎과 뿌리의 항산화 및 항암 효과)

  • Seon Young Yoon;Ki Hyun Kim;Tae Kyung Hyun
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.137-141
    • /
    • 2023
  • The root of Adenophora triphylla is a highly valued medicinal resource that is used to prevent human obesity, cancer, and inflammation, whereas young leaves or sprouts of A. triphylla are used as food ingredients. In this study, we compared the antioxidant and anticancer activities of 70% ethanol extracts of A. triphylla roots and leaves. The leaf extract exhibited stronger 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging activity, reducing power, and oxygen radical absorbance capacity (ORAC) than the root extract. Furthermore, the leaf extract was observed to be a potent source of anticancer compounds that were effective against A549 (lung cancer), LNcaP (prostate cancer), SKOV3 (ovarian cancer), and Caco-2 (colorectal cancer) cells. These results indicate that not only the roots but also the leaves of A. triphylla can serve as valuable sources of functional materials in the pharmaceutical industry.

Ginseng berry polysaccharides on inflammation-associated colon cancer: inhibiting T-cell differentiation, promoting apoptosis, and enhancing the effects of 5-fluorouracil

  • Wang, Chong-Zhi;Hou, Lifei;Wan, Jin-Yi;Yao, Haiqiang;Yuan, Jinbin;Zeng, Jinxiang;Park, Chan Woong;Kim, Su Hwan;Seo, Dae Bang;Shin, Kwang-Soon;Zhang, Chun-Feng;Chen, Lina;Zhang, Qi-Hui;Liu, Zhi;Sava-Segal, Clara;Yuan, Chun-Su
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.282-290
    • /
    • 2020
  • Background: Ginseng is a commonly used herbal medicine in treating various medical conditions. Chronic gut inflammation is a recognized factor for the development of colorectal cancer (CRC). In this project, Asian ginseng berry polysaccharide preparations were used to assess their effects on CRC and related immune regulation mechanisms. Methods: Ginseng berry polysaccharide extract (GBPE) and purified ginseng berry polysaccharide portion (GBPP) were used to evaluate their activities on human HCT-116 and HT-29 CRC cell proliferation. Interleukin-8 secretion analysis was performed on HT-29 cells. Naive CD4 cell isolation and T-helper cell differentiation were performed and determined using flow cytometry for Th1 and Treg in addition to cell cycle and apoptotic investigation. Results: GBPE and GBPP significantly inhibited interleukin-8 secretion and cancer cell proliferation, inhibited CD4+IFN-γ+ cell (Th1) differentiation, and decreased CD4+FoxP3+ cell (Treg) differentiation. Compared to the GBPE, GBPP showed more potent antiinflammatory activities on the malignant cells. This is consistent with the observation that GBPP can also inhibit Th1-cell differentiation better, suggesting that it has an important role in antiinflammation, whereas Treg cells hinder the body's immune response against malignancies. Supported by cell cycle and apoptosis data, GBPE and GBPP, at various degrees, remarkably enhanced the anticancer activities of 5-fluorouracil. Conclusion: Data from this project suggested that Asian ginseng berry potentially has clinical utility in managing enteric inflammation and suppressing CRC through immunomodulation mechanisms.

Endogenous Nitric Oxide Strengthens Doxorubicin-induced Apoptosis in Human Colorectal Cell Lines (Doxorubicin에 의한 내인성 산화질소가 인간 대장암 세포주에서의 세포사멸에 미치는 효과)

  • Im, Soon Jae;Kim, Ji Hye;Kim, Min Young
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1137-1143
    • /
    • 2014
  • Doxorubicin is a general chemotherapy drug widely used for a number of cancers. However, the correlation between endogenous nitric oxide ($NO^{\bullet}$) levels and chemoresistance to doxorubicin remains unclear. In this study, we investigated the effect of endogenous $NO^{\bullet}$ on the anticancer activity of doxorubicin in human colon cancer cell lines HCT116 and HT29 with different p53 status. The cells were treated with either doxorubicin alone or in combination with the $NO^{\bullet}$ synthase (NOS) inhibitor $N^G$-monomethyl-L-arginine (NMA). Doxorubicin differentially inhibited the growth of both the HCT116 (p53-WT) and HT29 (p53-MUT) cells, which was mitigated by cotreatment with NMA. Further studies revealed that inhibition of endogenous $NO^{\bullet}$ mitigated doxorubicin-induced apoptosis in the HCT116 and HT29 cells, as evidenced by apoptotic DNA fragmentation and the sub-G1 peak of apoptotic markers. Apoptosis was delayed in the HT29 cells, and its magnitude was greatly reduced, underscoring the importance of the modulation of p53 in the response. RT-PCR analysis revealed that doxorubicin down-regulated levels of inhibitors of the apoptosis family (cellular IAP-1 and-2). Collectively, these data show that induction of apoptosis by doxorubicin in human colon cancer cells is possibly related to modulation of endogenous $NO^{\bullet}$, the expression of the IAP family of genes, and the status of p53. The underlying mechanisms may represent potential targets for adjuvant strategies to improve the efficacy of chemotherapy for colon cancer.