• Title/Summary/Keyword: human colon cancer cells

Search Result 387, Processing Time 0.03 seconds

Vitamin C increases the apoptosis via up-regulation p53 during cisplatin treatment in human colon cancer cells

  • An, Sung-Ho;Kang, Jung-Hoon;Kim, Dong-Heui;Lee, Myeong-Seon
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.211-216
    • /
    • 2011
  • Vitamin C (VC) is an important antioxidant and enzyme co-factor that works by stimulating the immune system and protecting against infections. It is well known that melanoma cells are more susceptible to VC than any other tumor cells. However, the role of VC in the treatment of colon cancer has not been studied. Cisplatin (CDDP) is a DNA damaging agent and is widely used for treating cancer, while the role of p53 in CDDP-induced cell death has been stressed. Using cell growth assays, morphological methods, Western blotting, flow cytometry, and DNA fragmentation analysis, we measured the expression of p53 level involved in the effect of VC on CDDP-induced apoptosis of HCT116, a human colon cancer cell line. CDDP plus VC treatment resulted in significantly increased apoptosis along with upregulation of p53 compared to untreated cells and/or CDDP-treated cells. These results suggest that VC enhanced CDDP sensitivity and apoptosis via upregulation of p53.

Inhibitory effects of calcium against intestinal cancer in human colon cancer cells and $Apc^{Min/+}$ mice

  • Ju, Jihyeung;Kwak, Youngeun;Hao, Xingpei;Yang, Chung S.
    • Nutrition Research and Practice
    • /
    • v.6 no.5
    • /
    • pp.396-404
    • /
    • 2012
  • The aim of the study was to investigate the inhibitory effects of calcium against intestinal cancer in vitro and in vivo. We first investigated the effects of calcium treatment in HCT116 and HT29 human colon cancer cells. At the concentration range of 0.8-2.4 mM, calcium significantly inhibited cell growth (by 9-29%), attachment (by 12-26%), invasion (by 15-31%), and migration (by 19-61%). An immunofluorescence microscope analysis showed that the treatment with calcium (1.6 mM) for 24 h increased plasma membrane ${\beta}$-catenin but decreased nuclear ${\beta}$-catenin levels in HT29 cells. We then investigated the effect of dietary calcium on intestinal tumorigenesis in $Apc^{Min/+}$ mice. Mice received dietary treatment starting at 6 weeks of age for the consecutive 8 weeks. The basal control diet contained high-fat (20% mixed lipids by weight) and low-calcium (1.4 mg/g diet) to mimic the average Western diet, while the treatment diet contained an enriched level of calcium (5.2 mg calcium/g diet). The dietary calcium treatment decreased the total number of small intestinal tumors (by 31.4%; P < 0.05). The largest decrease was in tumors which were ${\geq}$ 2 mm in diameter, showing a 75.6% inhibition in the small intestinal tumor multiplicity (P < 0.001). Immunohistochemical analysis showed significantly reduced nuclear staining of ${\beta}$-catenin (expressed as nuclear positivity), but increased plasma membrane staining of ${\beta}$-catenin, in the adenomas from the calcium-treated groups in comparison to those from the control group (P < 0.001). These results demonstrate intestinal cancer inhibitory effects of calcium both in human colon cancer cells and $Apc^{Min/+}$ mice. The decreased ${\beta}$-catenin nuclear localization caused by the calcium treatment may contribute to the inhibitory action.

Aurora kinase A induces migration and invasion by inducing epithelial-to-mesenchymal transition in colon cancer cells

  • Hong, On-Yu;Kang, Sang Yull;Noh, Eun-Mi;Yu, Hong-Nu;Jang, Hye-Yeon;Kim, Seong-Hun;Hong, Jingyu;Chung, Eun Yong;Kim, Jong-Suk
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.87-91
    • /
    • 2022
  • Aurora kinase is a family of serine/threonine kinases intimately associated with mitotic progression and the development of human cancers. Studies have shown that aurora kinases are important for the protein kinase C (PKC)-induced invasion of colon cancer cells. Recent studies have shown that aurora kinase A promotes distant metastasis by inducing epithelial-to-mesenchymal transition (EMT) in colon cancer cells. However, the role of aurora kinase A in colon cancer metastasis remains unclear. In this study, we investigated the effects of aurora kinase A on PKC-induced cell invasion, migration, and EMT in human SW480 colon cancer cells. Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) changed the expression levels of EMT markers, increasing α-SMA, vimentin, and MMP-9 expression and decreasing E-cadherin expression, with changes in cell morphology. TPA treatment induced EMT in a PKC-dependent manner. Moreover, the inhibition of aurora kinase A by siRNAs and inhibitors (reversine and VX-680) suppressed TPA-induced cell invasion, migration, and EMT in SW480 human colon cells. Inhibition of aurora kinase A blocked TPA-induced vimentin and MMP-9 expression, and decreased E-cadherin expression. Furthermore, the knockdown of aurora kinase A decreased the transcriptional activity of NF-κB and AP-1 in PKC-stimulated SW480 cells. These findings indicate that aurora kinase A induces migration and invasion by inducing EMT in SW480 colon cancer cells. To the best of our knowledge, this is the first study that showed aurora kinase A is a key molecule in PKC-induced metastasis in colon cancer cells.

Effects of Ulmi cortex extract on cell apoptosis in HT-29 human colon cancer cells (유백피(楡白皮)가 HT-29 대장암세포의 활성 및 세포사멸에 미치는 영향)

  • Jung, Sun-Ju;Jang, Tae-Jung;Lee, Jae-Hyun;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.51-58
    • /
    • 2006
  • Objectives : In this study, we investigate that Ulmi cortex extract contributes to growth inhibitory effect and anti-cancer activity on the HT-29 human colon cancer cells. Methods : Ulmi cortex was extracted from the leaves of the plant using water. The Ulmi cortex extract was treated to different concentrations for 24 hr. Growth inhibitory effect was analyzed by measuring FACS study and MTT assay. Cell cycle inhibition was confirmed by kinases assay. Cell apoptosis was confirmed by surveying caspases cascades activation using Western blot. Results : Exposure to Ulmi cortex extract (0.4mg/ml) results in an inhibitory effect on cell growth in HT-29 cells. Growth inhibition by Ulmi cortex extract in HT-29 cells was related with the inhibition of proliferation and induction of apoptosis. The Ulmi cortex extract induces G1-cell cycle arrest and DNA fragmentation in HT-29 cells. Furthermore, Ulmi cortex extract induces cell apoptosis through the activation of caspases-3 and PARP cleavage. Conclusion : Ulmi cortex extract induces apoptosis in human colon cancer cells, therefore, we suggest that Ulmi cortex extract can be used as a novel class of anti-cancer drugs.

  • PDF

Effects of Purple Kohlrabi (Brassica oleracea var. gongylodes) Flesh and Peel Ethanol Extracts on the Antioxidant Activity and Antiproliferation of Human Cancer Cells (자색 콜라비 가식부와 껍질 에탄올 추출물의 항산화 활성 및 암세포 증식 억제효과)

  • Yang, Myung-Ja;Cha, Seon-Suk;Lee, Jae-Joon
    • The Korean Journal of Community Living Science
    • /
    • v.26 no.2
    • /
    • pp.405-414
    • /
    • 2015
  • This study examines the effects of purple Kohlrabi fresh and peel ethanol extracts on the antioxidative activity and antiproliferation of human cancer cells (Hep G2 human liver, HCT-116 human colon, and A549 human lung cancer cells.) The total flavonoid and anthocyanin content of purple Kohlrabi ethanol extracts were much greater in the peel than in the flesh. The DPPH radical scavenging activity and antioxidative index of purple Kohlrabi peel extracts were similar to those of the BHA and the BHT. Antiproliferation effects of purple Kohlrabi peel extracts on human cancer cells (Hep G2, HCT-116, and A549) strengthened in a dose-dependent manner. In particular, the antiproliferation activity of purple Kohlrabi peel extracts exceeded 40% in colon cancer cells. These results indicate that the purple Kohlrabi peel may contain bioactive compounds such as flavonoids as well as anthocyanin and that these compounds may facilitate cancer prevention.

Induction of Apoptosis with Kigelia africana fruits in HCT116 Human Colon Cancer Cells via MAPKs Signaling Pathway

  • Guon, Tae-Eun;Chung, Ha Sook
    • Natural Product Sciences
    • /
    • v.22 no.3
    • /
    • pp.209-215
    • /
    • 2016
  • Kigelia africana (Lam.) Benth. (Bignoniaceae) is a flowering plants in South, Central and West Africa and commonly known as the sausage tree (Eng.); worsboom (Afr.); umVunguta, umFongothi (Zulu); Modukguhlu (North Sotho); Muvevha (Venda). The dried, powdered fruits are used as dressing for wounds and ulcers, haemorrhoids, rheumatism, purgative, skin-firming, lactation in breast-feeding mothers. The aim of this study is to investigate the cytotoxic and apoptotic potentials of 70% ethanolic extracts of Kigelia africana fruits in HCT116 human colon cancer cells. Treatment of Kigelia africana fruits with various concentrations resulted in a sequence of characteristic of apoptosis, including loss of cell viability and morphological changes. Flow cytometry analysis showed Kigelia africana fruits increased the sub-G1 phase (apoptosis) population. Apoptosis confirmed by annexin V-fluorescein isothiocyanate and propidium iodide double staining in HCT116 human colon cancer cell lines. Moreover, analysis of the mechanism indicated that Kigelia africana fruits showed an increased Bax and Bcl-2 expressions in a dose-dependent manner, resulting in activation of hallmarks of apoptotic events, caspase-3, caspase-9 and cleaved poly-ADP-ribose polymerase. This is the first report to demonstrate the cytotoxicity of Kigelia africana fruits on HCT116 human colon cancer cells.

Studies on the Anti-cancer Effect and the Mechanism of Apoptosis by Baekduong-tang in Human Colon Cancer Cell Line HCT-116 (백두옹탕(白頭翁湯)의 대장암 세포주 HCT-116 항암효과와 세포자멸사에 관한 연구)

  • Kim, Jong-Uk;Moon, Goo;Park, Chan-Ny;Lee, Jeong-Han;Ji, Hye-Min
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.2
    • /
    • pp.273-289
    • /
    • 2010
  • Objectives : To investigate the anti-cancer effect of Baekduong-tang(BDOT) against cancer cells, the signaling pathway of apoptosis was explored in human colon cancer cells. Materials and Methods : Human colon cancer cell lines, including HT-29 and HCT-116 cells, were used. Cell viability was measured by MTT assay. Apoptosis was determined by DAPI nuclei staining and flow cytometry in HCT-116 cells treated with 0.25 mg/$m{\ell}$ Baekduong-tang for 48 hrs. Results : Baekduong-tang induced the apoptosis of p53 positive HCT-116 cells with G2/M phase arrest. Treatment with Baekduong-tang led to increased expression and phosphorylation of p53 and decreased expression of CDK2 and CDK6 in HCT-116 cells. It also activated caspase-3 through caspase-10 and caspase-9 activation. Finally, Baekduong-tang induced production $H_2O_2$, superoxide anion ($O_2^-$) and NO and modulated proteins expression including SOD, NOS, Bax and Bcl-2. Conclusions : These results indicate Baekduong-tang induces apoptotic death of HCT-116 cells through G2/M phase arrest and disturbance of intracellular redox status in a p53-dependent manner.

Amygdalin Extract from Armeniacae semen Induces Apoptosis in Human COLO 201 Colon Cancer Cells

  • Kim, Kyung-Nam;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.108-121
    • /
    • 2005
  • Backgrounds: Amygdalin (D-mandelonitrile B-gentiobioside), a cynogenic compound, is found in sweet and bitter almond, Persicae semen, and Armeniacae semen. Aqueous extract of amygdalin was made from Armeniacae semen and used in this study. Objectives: Apoptosis is a very important mechanism in cancer treatment. In the present study, it was investigated whether amygdalin induces apoptotic cell death in human COLO 201 colon cancer cells. Materials and Methods: For this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4,6diamidino-2-phenylindole (DAPI) staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, flow cytometric analysis, reverse transcription-polymerase chain reaction(PR-PCR), western blot analysis, and caspase-3 enzyme assay were performed on COLO 201 cells. Cells treated with amygdalin exhibited several characteristics of apoptosis. Results: Amygdalin treatment enhanced Bax expression and suppressed Bcl-2 expression in COLO 201 cells. Amygdalin also was shown to increase the caspase-3 activity. Conclusions: Amygdalin induces apoptotic cell death via Bax-dependent caspase-3 activation in COLO 201 cells.

  • PDF

MiR-133b Acts as a Tumor Suppressor and Negatively Regulates TBPL1 in Colorectal Cancer Cells

  • Xiang, Kai-Min;Li, Xiao-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3767-3772
    • /
    • 2014
  • Introduction: MicroRNAs have emerged as post-transcriptional regulators that are critically involved in tumorigenesis. This study was designed to explore the effect of miRNA 133b on the proliferation and expression of TBPL1 in colon cancer cells. Methods: Human colon cancer SW-620 cells and human colon adenocarcinoma HT-29 cells were cultured. MiRNA 133b mimcs, miRNA 133b inhibitors, siRNA for TBPL1 and scrambled control were synthesized and transfected into cells. MiR-133b levels in cells and CRC tumor tissue was measured by real-time PCR. TBPL1 mRNA was detected by RT-PCR. Cell proliferation was studied with MTT assay. Western blotting was applied to detect TBPL1 protein levels. Luciferase assays were conducted using a pGL3-promoter vector cloned with full length of 3'UTR of human TBPL1 or 3'UTR with mutant sequence of miR-133b target site in order to confirm if the putative binding site is responsible for the negative regulation of TBPL1 by miR-133b. Results: Real time PCR results showed that miRNA 133b was lower in CRC tissue than that in adjacent tissue. After miR-133b transfection, its level was elevated till 48h, accompanied by lower proliferation in both SW-620 and HT-29 cells. According to that listed in http://www.targetscan.org, the 3'-UTR of TBPL1 mRNA (NM_004865) contains one putative binding site of miR-133b. This site was confirmed to be responsible for the negative regulation by miR-133b with luciferase assay. Further, Western blotting and immunohistochemistry both indicated a higher TBPL1 protein expression level in CRC tissue. Finally, a siRNA for TBPL1 transfection obviously slowed down the cell proliferation in both SW-620 and HT-29 cells. Conclusion: MiR-133b might act as a tumor suppressor and negatively regulate TBPL1 in CRC.

Ganoderma Lucidum Polysaccharides Target a Fas/Caspase Dependent Pathway to Induce Apoptosis in Human Colon Cancer Cells

  • Liang, Zengenni;Guo, Yu-Tong;Yi, You-Jin;Wang, Ren-Cai;Hu, Qiu-Long;Xiong, Xing-Yao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.3981-3986
    • /
    • 2014
  • Ganoderma lucidum polysaccharides (GLP) extracted from Ganoderma lucidum have been shown to induce cell death in some kinds of cancer cells. This study investigated the cytotoxic and apoptotic effect of GLP on HCT-116 human colon cancer cells and the molecular mechanisms involved. Cell proliferation, cell migration, lactate dehydrogenase (LDH) levels and intracellular free calcium levels ($[Ca^{2+}]i$) were determined by MTT, wound-healing, LDH release and fluorescence assays, respectively. Cell apoptosis was observed by scanning and transmission electron microscopy. For the mechanism studies, caspase-8 activation, and Fas and caspase-3 expression were evaluated. Treatment of HCT-116 cells with various concentrations of GLP (0.625-5 mg/mL) resulted in a significant decrease in cell viability (P< 0.01). This study showed that the antitumor activity of GLP was related to cell migration inhibition, cell morphology changes, intracellular $Ca^{2+}$ elevation and LDH release. Also, increase in the levels of caspase-8 activity was involved in GLP-induced apoptosis. Western blotting indicated that Fas and caspase-3 protein expression was up-regulated after exposure to GLP. This investigation demonstrated for the first time that GLP shows prominent anticancer activities against the HCT-116 human colon cancer cell line through triggering intracellular calcium release and the death receptor pathway.