DOI QR코드

DOI QR Code

Induction of Apoptosis with Kigelia africana fruits in HCT116 Human Colon Cancer Cells via MAPKs Signaling Pathway

  • Guon, Tae-Eun (College of Natural Sciences, Duksung Women's University) ;
  • Chung, Ha Sook (College of Natural Sciences, Duksung Women's University)
  • Received : 2015.12.03
  • Accepted : 2016.03.31
  • Published : 2016.09.30

Abstract

Kigelia africana (Lam.) Benth. (Bignoniaceae) is a flowering plants in South, Central and West Africa and commonly known as the sausage tree (Eng.); worsboom (Afr.); umVunguta, umFongothi (Zulu); Modukguhlu (North Sotho); Muvevha (Venda). The dried, powdered fruits are used as dressing for wounds and ulcers, haemorrhoids, rheumatism, purgative, skin-firming, lactation in breast-feeding mothers. The aim of this study is to investigate the cytotoxic and apoptotic potentials of 70% ethanolic extracts of Kigelia africana fruits in HCT116 human colon cancer cells. Treatment of Kigelia africana fruits with various concentrations resulted in a sequence of characteristic of apoptosis, including loss of cell viability and morphological changes. Flow cytometry analysis showed Kigelia africana fruits increased the sub-G1 phase (apoptosis) population. Apoptosis confirmed by annexin V-fluorescein isothiocyanate and propidium iodide double staining in HCT116 human colon cancer cell lines. Moreover, analysis of the mechanism indicated that Kigelia africana fruits showed an increased Bax and Bcl-2 expressions in a dose-dependent manner, resulting in activation of hallmarks of apoptotic events, caspase-3, caspase-9 and cleaved poly-ADP-ribose polymerase. This is the first report to demonstrate the cytotoxicity of Kigelia africana fruits on HCT116 human colon cancer cells.

Keywords

References

  1. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D. CA Cancer J. Clin. 2011, 61, 69-90. https://doi.org/10.3322/caac.20107
  2. Line-Edwige, M.; Raymond, F. G.; Francois, E.; Francois, E.; Edouard, N. E. Afr. J. Tradit. Complement. Altern. Med. 2009, 6, 112-117.
  3. Sun, Q.; Chen, T.; Wang, X.; Wei, X. J. Cell Physiol. 2010, 222, 421-432. https://doi.org/10.1002/jcp.21982
  4. Thornberry, N. A.; Rano, T. A.; Peterson, E. P.; Rasper, D. M.; Timkey, T.; Garcia-Calvo, M.; Houtzager, V. M.; Nordstrom, P. A.; Roy, S.; Vaillancourt, J. P.; Chapman, K. T.; Nicholson, D. W. J. Biol. Chem. 1997, 272, 17907-17911. https://doi.org/10.1074/jbc.272.29.17907
  5. Wang, X. Genes Dev. 2001, 15, 2922-2933.
  6. Reuter, S.; Eifes, S.; Dicato, M.; Aggarwal, B. B.; Diederich, M. Biochem. Pharmacol. 2008, 76, 1340-1351. https://doi.org/10.1016/j.bcp.2008.07.031
  7. Balaban, R. S.; Nemoto, S.; Finket, T. Cell 2005, 120, 483-495. https://doi.org/10.1016/j.cell.2005.02.001
  8. Madesh, M.; Antonsson, B.; Srinivasula, S. M.; Alnemri, E. S.; Hajnoczky, G. J. Biol. Chem. 2002, 277, 5651-5659. https://doi.org/10.1074/jbc.M108171200
  9. Fernandes-Alnemri, T.; Litwack, G.; Alnemri, E. S. J. Biol. Chem. 1994, 269, 30761-30764.
  10. Saini, S.; Kaur, H.; Verma, B.; Ripudaman; Singh, S. K. Nat. Prod. Rad. 2009, 8, 190-197.
  11. Higgins, C. A.; Bell, T.; Delbederi, Z.; Feutren-Burton, S.; McClean, B.; O'Dowd, C.; Watters, W.; Armstrong, P.; Waugh, D.; van den Berg, H. Planta Med. 2010, 76, 1840-1846. https://doi.org/10.1055/s-0030-1250046
  12. Agyare, C.; Dwobeng, A. S.; Agyepong, N.; Boakye, Y. D.; Mensah, K. B.; Ayande, P. G.; Adarkwa-Yiadom, M. See comment in PubMed Commons below Adv. Pharmacol. Sci. 2013, Article ID 692613, 10 page.
  13. Picerno, P.; Autore, G.; Marzocco, S.; Meloni, M.; Sanogo, R.; Aquino, R. P. J. Nat. Prod. 2005, 68, 1610-1614. https://doi.org/10.1021/np058046z
  14. Carmichael, J.; DeGraff, W. G.; Gazdar, A. F.; Minna, J. D.; Mitchell, J. B. Cancer Res. 1987, 47, 936-942.
  15. Lizard, G.; Fournel, S.; Genestier, L.; Dhedin, N.; Chaput, C.; Flacher, M.; Mutin, M.; Panaye, G.; Revillard, J. P. Cytometry 1995, 21, 275-283. https://doi.org/10.1002/cyto.990210308
  16. Nicoletti, I.; Migliorati, G.; Paqliacci, M. C.; Grignani, F.; Riccardi, C. J. Immunol. Methods 1991, 139, 271-279. https://doi.org/10.1016/0022-1759(91)90198-O
  17. Ryu, M. J.; Kim, A. D.; Kang, K. A.; Chung, H. S.; Kim, H. S.; Suh, I. S.; Chang, W. Y.; Hyun, J. W. In Vitro Cell. Dev. Biol. Anim. 2013, 49, 74-81. https://doi.org/10.1007/s11626-012-9547-3
  18. Strickland, L.; Letson, G. D.; Muro-Cacho, C. A. Cancer Control 2001, 8, 252-261. https://doi.org/10.1177/107327480100800305
  19. Ryu, M. J.; Chung, H. S. In Vitro Cell. Dev. Biol. Anim. 2015, 51, 92-101. https://doi.org/10.1007/s11626-014-9806-6
  20. Bold, R. J.; Termuhlen, P. M.; McConkey, D. J. Surg. Oncol. 1997, 6, 133-142. https://doi.org/10.1016/S0960-7404(97)00015-7
  21. Xu, Y.; Ge, R.; Du, J.; Xin, H.; Yi, T.; Sheng, J.; Wang, Y.; Ling, C. Cancer Lett. 2009, 284, 229-237. https://doi.org/10.1016/j.canlet.2009.04.028
  22. Novak, B.; Tyson, J. J. Biochem. Soc. Trans. 2003, 31, 1526-1529. https://doi.org/10.1042/bst0311526
  23. Han, C. R.; Jun, D. Y.; Woo, H. J.; Jeong, S. Y.; Woo, M. H.; Kim, Y. H. Bioorg. Med. Chem. Lett. 2012, 22, 945-953. https://doi.org/10.1016/j.bmcl.2011.12.023
  24. Cory, S.; Adams, J. M. Nat. Rev. Cancer 2002, 2, 647-656. https://doi.org/10.1038/nrc883
  25. Nagappan, A.; Park, K. I.; Park, H. S.; Kim, J. A.; Hong, G. E.; Kang, S. R.; Lee, D. H.; Kim, E. H.; Lee, W. S.; Won, C. K.; Kim, G. S. Food Chem. 2012, 135, 1920-1928. https://doi.org/10.1016/j.foodchem.2012.06.050
  26. Kim, K. N.; Ham, Y. M.; Moon, J. Y.; Kim, M. J.; Jung, Y. H.; Jeon, Y. J.; Lee, N. H.; Kang, N.; Yang, H. M.; Kim, D.; Hyun, C. G. Food Chem 2012, 135, 2112-2117. https://doi.org/10.1016/j.foodchem.2012.05.067
  27. Oliver, F. J.; de la Rubia, G.; Rolli, V.; Ruiz-Ruiz, M. C.; de Murcia, G.; Murcia, J. M. J. Biol. Chem. 1998, 273, 33533-33539. https://doi.org/10.1074/jbc.273.50.33533
  28. Cuadrado, A.; Nebreda, A. R. Biochem. J. 2010, 429, 403-417. https://doi.org/10.1042/BJ20100323
  29. Ahmed-Choudhury, J.; Williams, K. T.; Young, L. S.; Adams, D. H.; Afford, S. C. Cell Signal. 2006, 18, 456-468. https://doi.org/10.1016/j.cellsig.2005.05.015

Cited by

  1. Raphanus sativus Sprout Causes Selective Cytotoxic Effect on p53-Deficient Human Lung Cancer Cells in vitro vol.12, pp.2, 2017, https://doi.org/10.1177/1934578x1701200224
  2. Medicinal Plants Used in Traditional Management of Cancer in Uganda: A Review of Ethnobotanical Surveys, Phytochemistry, and Anticancer Studies vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/3529081