References
- Aghili M, Izadi S, Madani H, et al (2010). Clinical and pathological evaluation of patients with early and late recurrence of colorectal cancer. Asia Pac J Clin Oncol, 6, 35-41. https://doi.org/10.1111/j.1743-7563.2010.01275.x
- Ambros V (2004). The functions of animal microRNAs. Nature, 431, 350-5. https://doi.org/10.1038/nature02871
- Ayude D, Rodriguez-Berrocal FJ, Ayude J, et al (2013). Preoperative serum CA 72.4 as prognostic factor of recurrence and death, especially at TNM stage II, for colorectal cancer. BMC Cancer, 13, 543. https://doi.org/10.1186/1471-2407-13-543
- Bandres E, Cubedo E, Agirre X, et al (2006). Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol cancer, 5, 29.
- Dantonel JC, Wurtz JM, Poch O, et al (1999). The TBP-like factor: an alternative transcription factor in metazoa? Trends Biochem Sci, 24, 335-9. https://doi.org/10.1016/S0968-0004(99)01436-X
- Ehrig K, Kilinc MO, Chen NG, et al (2013). Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1h68. J Transl Med, 11, 79. https://doi.org/10.1186/1479-5876-11-79
- Esquela-Kerscher A, Slack FJ (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 6, 259-69. https://doi.org/10.1038/nrc1840
- Farh KK, Grimson A, Jan C, et al (2005). The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science, 310, 1817-21. https://doi.org/10.1126/science.1121158
- Fetemeh H, Saeed A, Amir M, Mehdi E (2014). Clinicopathological features of colon adenocarcinoma in Qazvin, Iran: a 16 year study. Asian Pac J Cancer Prev, 15, 951-5. https://doi.org/10.7314/APJCP.2014.15.2.951
- Jacobi UG, Akkers RC, Pierson ES, et al (2007). TBP paralogs accommodate metazoan- and vertebrate-specific developmental gene regulation. EMBO J, 26, 3900-9. https://doi.org/10.1038/sj.emboj.7601822
- Koutsoulidou A, Mastroyiannopoulos NP, Furling D, et al (2011). Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev Biol, 11, 34. https://doi.org/10.1186/1471-213X-11-34
- Lim LP, Lau NC, Garrett-Engele P, et al (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769-73. https://doi.org/10.1038/nature03315
- Lim LP, Lau NC, Weinstein EG, et al (2003). The microRNAs of Caenorhabditis elegans. Genes Dev, 17, 991-1008. https://doi.org/10.1101/gad.1074403
- Lin M, Chen W, Huang J, et al (2011). MicroRNA expression profiles in human colorectal cancers with liver metastases. Oncol Rep, 25, 739-47.
- Lu J, Getz G, Miska EA, et al (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834-8. https://doi.org/10.1038/nature03702
- Martianov I, Brancorsini S, Gansmuller A, et al (2002). Distinct functions of TBP and TLF/TRF2 during spermatogenesis: requirement of TLF for heterochromatic chromocenter formation in haploid round spermatids. Development, 129, 945-55.
- Novello C, Pazzaglia L, Cingolani C, et al (2013). miRNA expression profile in human osteosarcoma: role of miR-1 and miR-133b in proliferation and cell cycle control. Int J Oncol, 42, 667-75.
- Panguluri SK, Bhatnagar S, Kumar A, et al (2010). Genomic profiling of messenger RNAs and microRNAs reveals potential mechanisms of TWEAK-induced skeletal muscle wasting in mice. PloS One, 5, e8760. https://doi.org/10.1371/journal.pone.0008760
- Schickel R, Boyerinas B, Park SM, et al (2008). MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene, 27, 5959-74. https://doi.org/10.1038/onc.2008.274
- Sun K, Deng HJ, Lei ST, et al (2013). miRNA-338-3p suppresses cell growth of human colorectal carcinoma by targeting smoothened. World J Gastroenterol, 19, 2197-207. https://doi.org/10.3748/wjg.v19.i14.2197
- Vannini A, Cramer P (2012). Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell, 45, 439-46. https://doi.org/10.1016/j.molcel.2012.01.023
- Wen D, Li S, Ji F, et al (2013). miR-133b acts as a tumor suppressor and negatively regulates FGFR1 in gastric cancer. Tumour Biol, 34, 793-803. https://doi.org/10.1007/s13277-012-0609-7
- Yamamoto H, Kohashi K, Fujita A, et al (2013). Fascin-1 overexpression and miR-133b downregulation in the progression of gastrointestinal stromal tumor. Mod Pathol, 26, 563-71. https://doi.org/10.1038/modpathol.2012.198
- Yamasaki T, Yoshino H, Enokida H, et al (2012). Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. Int J Oncol, 40, 1821-30.
- Zhou Y, Wu D, Tao J, et al (2013). MicroRNA-133 inhibits cell proliferation, migration and invasion by targeting epidermal growth factor receptor and its downstream effector proteins in bladder cancer. Scand J Urol, 47, 423-32. https://doi.org/10.3109/00365599.2012.748821
Cited by
- Enforced expression of miR-101 enhances cisplatin sensitivity in human bladder cancer cells by modulating the cyclooxygenase-2 pathway vol.10, pp.4, 2014, https://doi.org/10.3892/mmr.2014.2455
- MicroRNA-133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease vol.11, pp.4, 2015, https://doi.org/10.3892/mmr.2014.3075
- MicroRNAs in Colorectal Cancer: from Diagnosis to Targeted Therapy vol.15, pp.17, 2014, https://doi.org/10.7314/APJCP.2014.15.17.6989
- GRP78 Secreted by Colon Cancer Cells Facilitates Cell Proliferation via PI3K/Akt Signaling vol.15, pp.17, 2014, https://doi.org/10.7314/APJCP.2014.15.17.7245
- Combined downregulation of microRNA-133a and microRNA-133b predicts chemosensitivity of patients with esophageal squamous cell carcinoma undergoing paclitaxel-based chemotherapy vol.31, pp.11, 2014, https://doi.org/10.1007/s12032-014-0263-6
- Decreased miR-154 expression and its clinical significance in human colorectal cancer vol.13, pp.1, 2015, https://doi.org/10.1186/s12957-015-0607-5
- Let-7b inhibits cell proliferation, migration, and invasion through targeting Cthrc1 in gastric cancer vol.36, pp.5, 2015, https://doi.org/10.1007/s13277-014-2950-5
- DNA methylation is involved in the aberrant expression of miR-133b in colorectal cancer cells pp.1792-1082, 2015, https://doi.org/10.3892/ol.2015.3336
- miR-133b, a microRNA targeting S1PR1, suppresses nasopharyngeal carcinoma cell proliferation vol.11, pp.4, 2016, https://doi.org/10.3892/etm.2016.3043
- MicroRNA-133b Negatively Regulates Zebrafish Single Mauthner-Cell Axon Regeneration through Targeting tppp3 in Vivo vol.10, pp.1662-5099, 2017, https://doi.org/10.3389/fnmol.2017.00375
- Investigating MicroRNA and transcription factor co-regulatory networks in colorectal cancer vol.18, pp.1, 2017, https://doi.org/10.1186/s12859-017-1796-4
- Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/7354260
- expression in the healthy human colorectal epithelium: A randomized controlled trial vol.56, pp.9, 2017, https://doi.org/10.1002/mc.22666
- Regulatory Roles of Non-Coding RNAs in Colorectal Cancer vol.16, pp.8, 2015, https://doi.org/10.3390/ijms160819886
- Prognostic Value of MicroRNAs in Preoperative Treated Rectal Cancer vol.17, pp.4, 2016, https://doi.org/10.3390/ijms17040568
- miR-133b acts as a tumor suppressor and negatively regulates ATP citrate lyase via PPARγ in gastric cancer vol.38, pp.5, 2017, https://doi.org/10.3892/or.2017.5944