Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.8.3767

MiR-133b Acts as a Tumor Suppressor and Negatively Regulates TBPL1 in Colorectal Cancer Cells  

Xiang, Kai-Min (Department of General Surgery, The Third XiangYa Hospital of Central-South University)
Li, Xiao-Rong (Department of General Surgery, The Third XiangYa Hospital of Central-South University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.8, 2014 , pp. 3767-3772 More about this Journal
Abstract
Introduction: MicroRNAs have emerged as post-transcriptional regulators that are critically involved in tumorigenesis. This study was designed to explore the effect of miRNA 133b on the proliferation and expression of TBPL1 in colon cancer cells. Methods: Human colon cancer SW-620 cells and human colon adenocarcinoma HT-29 cells were cultured. MiRNA 133b mimcs, miRNA 133b inhibitors, siRNA for TBPL1 and scrambled control were synthesized and transfected into cells. MiR-133b levels in cells and CRC tumor tissue was measured by real-time PCR. TBPL1 mRNA was detected by RT-PCR. Cell proliferation was studied with MTT assay. Western blotting was applied to detect TBPL1 protein levels. Luciferase assays were conducted using a pGL3-promoter vector cloned with full length of 3'UTR of human TBPL1 or 3'UTR with mutant sequence of miR-133b target site in order to confirm if the putative binding site is responsible for the negative regulation of TBPL1 by miR-133b. Results: Real time PCR results showed that miRNA 133b was lower in CRC tissue than that in adjacent tissue. After miR-133b transfection, its level was elevated till 48h, accompanied by lower proliferation in both SW-620 and HT-29 cells. According to that listed in http://www.targetscan.org, the 3'-UTR of TBPL1 mRNA (NM_004865) contains one putative binding site of miR-133b. This site was confirmed to be responsible for the negative regulation by miR-133b with luciferase assay. Further, Western blotting and immunohistochemistry both indicated a higher TBPL1 protein expression level in CRC tissue. Finally, a siRNA for TBPL1 transfection obviously slowed down the cell proliferation in both SW-620 and HT-29 cells. Conclusion: MiR-133b might act as a tumor suppressor and negatively regulate TBPL1 in CRC.
Keywords
microRNA 133b; colon cancer cells; TBP like 1;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Schickel R, Boyerinas B, Park SM, et al (2008). MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene, 27, 5959-74.   DOI   ScienceOn
2 Vannini A, Cramer P (2012). Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell, 45, 439-46.   DOI
3 Wen D, Li S, Ji F, et al (2013). miR-133b acts as a tumor suppressor and negatively regulates FGFR1 in gastric cancer. Tumour Biol, 34, 793-803.   DOI
4 Yamamoto H, Kohashi K, Fujita A, et al (2013). Fascin-1 overexpression and miR-133b downregulation in the progression of gastrointestinal stromal tumor. Mod Pathol, 26, 563-71.   DOI
5 Yamasaki T, Yoshino H, Enokida H, et al (2012). Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. Int J Oncol, 40, 1821-30.
6 Zhou Y, Wu D, Tao J, et al (2013). MicroRNA-133 inhibits cell proliferation, migration and invasion by targeting epidermal growth factor receptor and its downstream effector proteins in bladder cancer. Scand J Urol, 47, 423-32.   DOI
7 Jacobi UG, Akkers RC, Pierson ES, et al (2007). TBP paralogs accommodate metazoan- and vertebrate-specific developmental gene regulation. EMBO J, 26, 3900-9.   DOI
8 Farh KK, Grimson A, Jan C, et al (2005). The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science, 310, 1817-21.   DOI   ScienceOn
9 Fetemeh H, Saeed A, Amir M, Mehdi E (2014). Clinicopathological features of colon adenocarcinoma in Qazvin, Iran: a 16 year study. Asian Pac J Cancer Prev, 15, 951-5.   과학기술학회마을   DOI   ScienceOn
10 Dantonel JC, Wurtz JM, Poch O, et al (1999). The TBP-like factor: an alternative transcription factor in metazoa? Trends Biochem Sci, 24, 335-9.   DOI
11 Ehrig K, Kilinc MO, Chen NG, et al (2013). Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1h68. J Transl Med, 11, 79.   DOI
12 Lim LP, Lau NC, Weinstein EG, et al (2003). The microRNAs of Caenorhabditis elegans. Genes Dev, 17, 991-1008.   DOI
13 Sun K, Deng HJ, Lei ST, et al (2013). miRNA-338-3p suppresses cell growth of human colorectal carcinoma by targeting smoothened. World J Gastroenterol, 19, 2197-207.   DOI
14 Novello C, Pazzaglia L, Cingolani C, et al (2013). miRNA expression profile in human osteosarcoma: role of miR-1 and miR-133b in proliferation and cell cycle control. Int J Oncol, 42, 667-75.
15 Panguluri SK, Bhatnagar S, Kumar A, et al (2010). Genomic profiling of messenger RNAs and microRNAs reveals potential mechanisms of TWEAK-induced skeletal muscle wasting in mice. PloS One, 5, e8760.   DOI
16 Koutsoulidou A, Mastroyiannopoulos NP, Furling D, et al (2011). Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev Biol, 11, 34.   DOI
17 Lim LP, Lau NC, Garrett-Engele P, et al (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769-73.   DOI   ScienceOn
18 Lin M, Chen W, Huang J, et al (2011). MicroRNA expression profiles in human colorectal cancers with liver metastases. Oncol Rep, 25, 739-47.
19 Lu J, Getz G, Miska EA, et al (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834-8.   DOI   ScienceOn
20 Martianov I, Brancorsini S, Gansmuller A, et al (2002). Distinct functions of TBP and TLF/TRF2 during spermatogenesis: requirement of TLF for heterochromatic chromocenter formation in haploid round spermatids. Development, 129, 945-55.
21 Aghili M, Izadi S, Madani H, et al (2010). Clinical and pathological evaluation of patients with early and late recurrence of colorectal cancer. Asia Pac J Clin Oncol, 6, 35-41.   DOI
22 Ambros V (2004). The functions of animal microRNAs. Nature, 431, 350-5.   DOI   ScienceOn
23 Ayude D, Rodriguez-Berrocal FJ, Ayude J, et al (2013). Preoperative serum CA 72.4 as prognostic factor of recurrence and death, especially at TNM stage II, for colorectal cancer. BMC Cancer, 13, 543.   DOI
24 Bandres E, Cubedo E, Agirre X, et al (2006). Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol cancer, 5, 29.
25 Esquela-Kerscher A, Slack FJ (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 6, 259-69.   DOI   ScienceOn