• Title/Summary/Keyword: human HepG2 cells

Search Result 440, Processing Time 0.024 seconds

Effects of the Cedrela sinensis A. Juss. Leaves on the Alcohol-Induced Oxidative Stress in the Human Hepatic HepG2 Cells (알코올을 처리한 HepG2 세포에서 참죽나무 잎 추출물의 세포 보호 및 항산화 효과)

  • Kim, Hyun-Jeong;Cho, Su-Yeon;Kim, Jung-Bong;Kim, Heon-Woong;Choe, Jeong-Sook;Jang, Hwan-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.4
    • /
    • pp.464-470
    • /
    • 2018
  • All the parts of the Cedrela sinensis A. Juss., including the seeds, roots, and leaves, have been known to exert medicinal effects. The C. sinensis and its major compound, quercetin, were previously reported to exhibit the anti-inflammatory and anti-oxidative activities. However, the hepatoprotective effects of the C. sinensis leaves against the alcohol-induced oxidative stress in the HepG2 cells have not been studied. In this study, we investigated the antioxidant activities and analyzed the flavonoid contents of the C. sinensis-leaf extract (CE). The total flavonoid contents of the CE is 1,874.5 mg/100 g dry weight (DW), while the total quercetin 3-O-rhamnoside (quercitrin) contents, which was identified as the major flavonol in the CE, is 1,456.0 mg/100 g DW. In the ethanol-stimulated HepG2 cells, the CE effectively prevented the cytotoxic effect and increased the gene expression of the antioxidant enzymes, such as the heme oxygenase-1 (HO-1) and the glutathion peroxide (GPx). The level of the reactive oxygen species (ROS) production was significantly decreased in the CE-treated HepG2 cells. In conclusion, the C. sinensis extract suppressed the alcohol-induced oxidative stress in the HepG2 cells via the induced GPx and HO-1 gene expressions. It is expected the CE positive effects will likely be attributed to the flavonoids, like the quercetin, within the CE.

Cytotoxicity of Paecilomyces tenuipes Against Human Carcinoma Cells, HepG2 and MCF-7 In Vitro

  • Shim, Joong-Sup;Chang, Hae-Ryong;Min, Eung-Gi;Kim, Yong-Hae;Han, Yeong-Hwan
    • Mycobiology
    • /
    • v.29 no.3
    • /
    • pp.170-172
    • /
    • 2001
  • The methanolic extract of fruiting body of Paecilomyces tenuipes DGUM 32001 showed significant cytotoxicity against human cancer cells: HepG2 and MCF-7. The methanolic extract was further fractionated with organic solvents such as chloroform and ethyl acetate in that order. Among the fractions tested, the ethyl acetate fraction showed the highest cytotoxicity against the carcinoma tested. The $IC_{50}$ values of ethyl acetate fraction against HepG and MCF-7 were 40 and 9.6 ${\mu}g/ml$, respectively.

  • PDF

Oxidation of fatty acid may be enhanced by a combination of pomegranate fruit phytochemicals and acetic acid in HepG2 cells

  • Kim, Ji Yeon;Ok, Elly;Kim, You Jin;Choi, Kyoung-Sook;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • v.7 no.3
    • /
    • pp.153-159
    • /
    • 2013
  • We investigated whether the combination of phytochemicals and acetic acid in the form of fruit vinegar provides an additive effect on changes of mRNA levels related to fatty acid oxidation in human hepatocyte (HepG2). Among the seven fruit vinegars (Rubuscoreanus, Opuntia, blueberry, cherry, red ginseng, mulberry, and pomegranate) studied, treatment of HepG2 with pomegranate vinegar (PV) at concentrations containing 1 mM acetic acid showed the highest in vitro potentiating effect on the mRNA expression levels of peroxisome proliferator-activated receptor ${\alpha}$, carnitinepalmitoyl transferase-1, and acyl-CoA oxidase compared to the control group (P < 0.05). Reversed-phase liquid chromatography in combination with quadrupole time-of-flight mass spectrometry analysis revealed four potential compounds (punicalagin B, ellagic acid, and two unidentified compounds) responsible for altered gene expression in HepG2 cells treated with PV as compared with the others. Further investigations are warranted to determine if drinking PV beverages may help to maintain a healthy body weight in overweight subjects.

Differential Gene Expression Induced by Naphthalene in Two Human Cell Line, HepG2 and HL-60

  • Kim, Youn-Jung;Song, Mee;Song, Mi-Kyung;Youk, Da-Young;Choi, Han-Saem;Sarma, Sailendra Nath;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.99-107
    • /
    • 2009
  • Naphthalene is bicyclic aromatic compound that is widely used in various domestic and commercial applications including lavatory scent disks, soil fumigants and moth balls. Exposure to naphthalene results in the development of bronchiolar damage, cataracts and hemolytic anemia in humans and laboratory animals. However, little information is available regarding the mechanism of naphthalene toxicity. We investigated gene expression profiles and potential signature genes in human hepatocellular carcinoma HepG2 cells and human promyelocytic leukemia HL-60 cells after 3 h and 48 h incubation with the IC$_{20}$ and IC$_{50}$ of naphthalene by using 44 k agilent whole human genome oligomicroarray and operon human whole 35 k oligomicroarray, respectively. We identified 616 up-regulated genes and 2,088 down-regulated genes changed by more than 2-fold by naphthalene in HepG2 cells. And in HL-60, we identified 138 up-regulated genes and 182 down-regulated genes changed by more than 2-fold. This study identified several interesting targets and functions in relation to naphthalene-induced toxicity through a gene ontology analysis method. Apoptosis and cell cycle related genes are more commonly expressed than other functional genes in both cell lines. In summary, the use of in vitro models with global expression profiling emerges as a relevant approach toward the identification of biomarkers associated with toxicity after exposure to a variety of environmental toxicants.

Subcellular Location of Spodpotera Cell-expressed Human HepG2-type Glucose Transport Protein

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.160-164
    • /
    • 2012
  • The baculovirus/insect cell expression system is of great value for the large-scale production of normal and mutant mammalian passive glucose-transport proteins heterologously for structural and functional studies. In most mammalian cells that express HepG2, this transporter isoform is predominantly located at the cell surface. However, it had been reported that heterologous expression of other membrane proteins using the baculovirus system induced highly vacuolated cytoplasmic membranes. Therefore, how a cell responds to the synthesis of large amounts of a glycoprotein could be an interesting area for investigation. In order to examine the subcellular location of the human HepG2 transport proteins when expressed in insect cells, immunofluorescence studies were carried out. Insect cells were infected with the recombinant baculovirus AcNPVHIS-GT or with wild-type virus at a MOI of 5, or were not exposed to viral infection. A high level of fluorescence displayed in cells infected with the recombinant virus indicated that transporters are expressed abundantly and present on the surface of infected Sf21 cells. The evidence for the specificity of the immunostaining was strengthened by the negative results shown in the negative controls. Distribution of the transporter protein expressed in insect cells was further revealed by making a series of optical sections through an AcNPVHIS-GT-infected cell using a confocal microscope, which permits optical sectioning of cell sample. These sections displayed intense cytoplasmic immunofluorecence surrounding the region occupied by the enlarged nucleus, indicating that the expressed protein was present not only at the cell surface but also throughout the cytoplasmic membranous structures.

Growth Inhibitory Activity of Honokiol through Cell-cycle Arrest, Apoptosis and Suppression of Akt/mTOR Signaling in Human Hepatocellular Carcinoma Cells

  • Hong, Ji-Young;Park, Hyen Joo;Bae, KiHwan;Kang, Sam Sik;Lee, Sang Kook
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.155-159
    • /
    • 2013
  • Honokiol, a naturally occurring neolignan mainly found in Magnolia species, has exhibited a potential anti-proliferative activity in human cancer cells. However, the growth inhibitory activity against hepatocellular carcinoma cells and the underlying molecular mechanisms has been poorly determined. The present study was designed to examine the anti-proliferative effect of honokiol in SK-HEP-1 human hepatocellular cancer cells. Honokiol exerted anti-proliferative activity with cell-cycle arrest at the G0/G1 phase and sequential induction of apoptotic cell death. The cell-cycle arrest was well correlated with the down-regulation of checkpoint proteins including cyclin D1, cyclin A, cyclin E, CDK4, PCNA, retinoblastoma protein (Rb), and c-Myc. The increase of sub-G1 peak by the higher concentration of honokiol ($75{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by decreased expression of Bcl-2, Bid, and caspase-9. Hohokiol was also found to attenuate the activation of signaling proteins in the Akt/mTOR and ERK pathways. These findings suggest that the anti-proliferative effect of honokiol was associated in part with the induction of cell-cycle arrest, apoptosis, and dow-nregulation of Akt/mTOR signaling pathways in human hepatocellular cancer cells.

Anticancer Effect of Citrus Fruit Prepared by Gamma Irradiation of Budsticks (감귤 돌연변이체의 인간 암세포 증식 억제와 자연사멸 증강효과)

  • Kim, Ji Hye;Kim, Min Young
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1051-1058
    • /
    • 2015
  • Citrus mutant fruits were induced by irradiation of citrus budsticks with 120 Gy of cobalt (60CO) gamma irradiation. The citrus mutant inhibited the growth and induced apoptosis in various human cancer cells, including A549, HepG2, HCT116, MCF-7, and Hela. The results of a trypan blue exclusion assay showed that citrus mutant fruits exhibited excellent antiproliferation activity in various human cancer cells and low cytotoxicity in normal 16HBE140- and CHANG cells. In addition, the cell death induced by the citrus mutant fruits was associated with an increased population of cells in sub-G1 phase, and it caused DNA fragmentation in human lung adenocarcinoma A549 and hepatocellular carcinoma HepG2 cells. It also up-regulated the amount of cellular nitric oxide (NO) produced as a result of nitric oxide synthase (NOS) activation and suppressed the inhibitor of apoptosis protein (IAP) family in A549 and HepG2 cells. These findings indicate that the citrus mutant fruits activates the NO-mediated apoptotic pathway in A549 and HepG2 cells. It may merit further investigation as a potential chemotherapeutic and chemopreventive agent for the treatment of various types of cancer cells. The results provide important major new insights into the mechanisms of the anticancer activity of citrus mutant fruits.

Hepatopotective Effects of Black Rice on Superoxide Anion Radicals in HepG2 Cells

  • Shim, Sang-In;Chung, Jin-Woong;Lee, Jeong-Min;Hwang, Kwon-Tack;Sone, Jin;Hong, Bum-Shik;Cho, Hong-Yon;Jun, Woo-Jin
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.993-996
    • /
    • 2006
  • Cyanidin 3-glucoside (C3G) isolated from black rice was investigated for hepatoprotective effects in HepG2 cells under oxidative stress. When an increase in the production of reactive oxygen species (ROS) was induced by gramoxone, cell viability was drastically decreased by 42%. However, in the presence of C3G, no hepatocytic damage was observed in HepG2 cells treated with gramoxone. C3G was found to manifest a stronger scavenging effect (91%) on superoxide anion radical ($O_2\;^{.-}$) than any of the other natural and synthetic antioxidants. Results suggest that C3G from black rice possesses hepatoprotective effects in vitro, which may be, at least in part, due to $O_2\;^{.-}$ scavenging.

Caffeine attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells

  • Quan, Hai Yan;Kim, Do Yeon;Chung, Sung Hyun
    • BMB Reports
    • /
    • v.46 no.4
    • /
    • pp.207-212
    • /
    • 2013
  • The main purpose of this study is to examine the effect of caffeine on lipid accumulation in human hepatoma HepG2 cells. Significant decreases in the accumulation of hepatic lipids, such as triglyceride (TG), and cholesterol were observed when HepG2 cells were treated with caffeine as indicated. Caffeine decreased the mRNA level of lipogenesis-associated genes (SREBP1c, SREBP2, FAS, SCD1, HMGR and LDLR). In contrast, mRNA level of CD36, which is responsible for lipid uptake and catabolism, was increased. Next, the effect of caffeine on AMP-activated protein kinase (AMPK) signaling pathway was examined. Phosphorylation of AMPK and acetyl-CoA carboxylase were evidently increased when the cells were treated with caffeine as indicated for 24 h. These effects were all reversed in the presence of compound C, an AMPK inhibitor. In summary, these data indicate that caffeine effectively depleted TG and cholesterol levels by inhibition of lipogenesis and stimulation of lipolysis through modulating AMPK-SREBP signaling pathways.

The Combined Effect of Moschus and Anti-tumor drug Mitomycin C (사향과 항암제 Mitomycin C의 병용효과)

  • Eun Jae Soon;Kim Dae Keun;Song Jung Mo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1404-1408
    • /
    • 2003
  • The combined effects of water-soluble fraction of Moschus (ME) and anti-tumor drug mitomycin C on the proliferation of human tumor cell-lines were estimated by MTT colorimetric assay. ME inhibited the proliferation of Hep G2, A540, HeLa, KHOS-NP and Balb/c 3T3 cells. Also, ME increased the cytotoxicity of mitomycin C on Hep G2, A549 and HeLa cells. In addition, ME enhanced the cell viability of murine splenocytes and human lymphocytes at the concentration of 100㎍/㎖. These results indicate that ME inhibits the proliferation of human tumor cells and increases the cytotoxicity of mitomycin C without cytoxicity on immune cells.