This article describes a method for producing chitosan non-woven fabrics by just hot pressing without the use of a binder. A study has been made of the wet spinning of chitosan fiber. The fibers were rinsed thoroughly in running water and chopped wet into staples of with a length of approximately 5-10 mm. The chopped chitosan staples were dispersed uniformly in water and fabricated using a non-woven making machine. This study examined the formation and the characteristics of chitosan non-woven fabrics manufactured by hot pressing without the use of a binder. The effects of the non-woven fabrication conditions on the thermal, morphological, structural, and physical properties of chitosan non-woven fabric with and without water as a plasticizer were studied. The temperature of the exothermic peak, decomposition of chitosan fibers increased with increasing heating rate. Water in the chitosan fiber effectively plasticized the chitosan fiber. The thermal bonded structure of the wet chitosan fiber with water as a plasticizer was clearly found in many parts of the non-woven fabric at a fabrication temperature of $200^{\circ}C$. The intensity and profile of the (100) plane($2{\theta}=10.2^{\circ}$) and (040) plane($2{\theta}=20.9^{\circ}$) in the chitosan non-woven fabric decreases and became smooth in the non-woven fabric formation by melting.
An ${\alpha}$-Ferrite (Fe) powder dispersed with 4 vol.% of $Al_2O_3$ was successfully produced by a simple miling at 210 K with a mixture of $Fe_2O_3$, Fe and Al ingredient powders, followed by 2 step high temperature consolidation: Hot Pressing (HP) at 1323 K and then Hot Isostatic Pressing at 1423 K. The microstructure of the consolidated material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEM-EDS analysis showed that the HIPed materials comprised a mixture of pure Fe matrix with a grain size of ~20 nm and $Al_2O_3$ with a bimodal size distribution of extremely fine (~5 nm) and medium size dispersoids (~20 nm). The mechanical properties of the consolidated materials were characterized by compressive test and micro Vickers hardness test at room temperature. The results showed that the yield strength of the ODS (Oxide Dispersion Strengthened) Fe alloy are as much as $674{\pm}39$ MPa and the improvement of the yield strength is attributed to the presence of the fine $Al_2O_3$ dispersoid.
Gadolinium tetraboride ($GdB_4$) was synthesized by reduction of $Gd_2O_3$ using boron carbide in presence of carbon. Effect of temperature on product quality was investigated. Pure $GdB_4$ powder was obtained in vacuum at $1500^{\circ}C$. Pressureless sintering experiments revealed that sintering takes place only above $1600^{\circ}C$. A maximum density of 77.1% of the theoretical value was obtained at $1800^{\circ}C$ by pressureless sintering. Hot pressing resulted in 95.5% of theoretical density at the lower temperature of $1700^{\circ}C$ under 35 MPa pressure. Hardness and fracture toughness of dense $GdB_4$ were measured and found to be 21.4 GPa and $2.3MPa{\cdot}m^{1/2}$, respectively. After exposure to air at $900^{\circ}C$, the formation of a porous and non-protective oxide layer was observed.
[ $Ni_2Si$ ] mixed powders were mechanically alloyed by a ball mill and then processed by hot isostatic pressing (HIP) and spark plasma sintering (SPS). In the powder that was mechanically alloyed for 15minutes(MA 15 min), only Ni and Si were observed but in the powder that was mechanically alloyed for 30minutes(MA 30 min), $Ni_2Si$, Ni and Si were mixed together. Some of the MA 15 min powder and MA 30 min powder were processed by HIP under pressure of 150MPa at the temperature of $1000^{\circ}C$ for two hours and some of them were processed by SPS under pressure of 60 MPa at the temperature of $1000^{\circ}C$ for 60 seconds. Both methods completely compounded the powders to $Ni_2Si$. The maximum density of sintered lumps by HIP method was 99.5% and the maximum density of the sintered lump by SPS method was 99.3%. with the hardness of HRc 66 with the hardness of HRc 63. Therefore, the SPS method that can sinter in short time at low cost is considered to be more economical that the HIP method that requires complicated sintering conditions and high cost and the sintering can produce target materials in desired sizes and shapes to be used for thin film.
Si3N4, AlN and Y2O3 powder mixtures of the Y0.1(Si, Al)12(N, O)16 composition were hot-pressed at 1900℃ for 0 to 60 min under 30 MPa in order to fabricate the partially-stabilized α-Sialon ceramics (X=0.1). Room and high temperature flexural strengths of the specimens were compared with those of Si3N4-5 wt%Y2O3, Si3N4-5 wt%Y2O3-2 wt%Al2O3, and β-Sialon (Z=0.5) ceramics. The flexural strength of the α-Sialon ceramics which was hot-pressed for 15 min showed the highest value of 820 MPa at 1400℃ that is relatively higher temperature. It is guessed that a little amount of glassy phase existed in grain boundary because Y2O3 and AlN components were incoperated in Si3N4 grains, or transient liquid phase sintering, and microstructure with the smaller grain size and the interlocked grains of α'-and β-Si3N4 was obtained by the hot-pressing at high temperature of 1900℃ for the short time (15 min).
A promising method for removal of Cs ions from water and their incorporation into stable crystal structure ready for safe and permanent disposal was described. Cs-exchanged X zeolite was hot-pressed at temperature ranging from 800 to 950 ℃ to fabricate dense pollucite ceramics. It was found that the application of external pressure reduced the pollucite formation temperature. The effect of sintering temperature on density, phase composition and mechanical properties was investigated. The highest density of 92.5 %TD and the highest compressive strength of 79 MPa were measured in pollucite hot-pressed at 950 ℃ for 3 h. Heterogeneity of samples obtained at 950 ℃ was determined using scanning electron microscopy. The pollucite hot-pressed at 950 ℃ had low linear thermal expansion coefficient of ~4.67 × 10-6 K-1 in the temperature range from 100 to 1000 ℃.
Alumina($Al_2O_3$)-Titanium Diboride($TiB_2) particulate composites were fabricated by hot pressing of the powder mixture that was prepared from Self-propagating High Temperature Synthesis (SHS) product and commercial powders. Their propeties were examined in order to find feasibility of using SHS for making the high performance ceramic composite. $TiB_2 particles obtained by grinding the SHS product were finer than the commercial powders. Hot pressed sample containing the SHS products exhibited higher strength than the one prepared from the commercial powders.
$Al_2$$O_3$-SiC 화합물 분말이 $SiO_2$, A1 그리고 C 분말들을 원료분말로 하여 SHS(self-propagating High-temperature Synthesis)법에 의해 제조되었다. 원료 분말에서의 몰비, 성형압력, 반응물의 초기온도의 영향이 생성물과 연소과정에 대해 연구되었다. $SiO_2$/A1/C계의 자전연소합성은 낮은 연소온도 때문에 $400^{\circ}C$ 이상으로 예열되어야 한다. 연소반응의 결과로서 최종생성물의 순도는 반응물의 순도보다 높았다. 이 계에서 $SiO_2$:Al:C의 적당한 몰비는 3.0:4.0:6.0이었고, free carbon은 30min 동안 $650^{\circ}C$에서 배소함으로써 제거되었다. 본 연구에서 상압소결은 $1700^{\circ}C$에서 powder bed를 사용한 표본의 분해를 제어하고 치밀한 소결체를 얻는데 매우 효과적이었다. hot-pressing으로 생성된 소결체는 이론비교밀도의 약 98%이었다.
소결 분위기가 금속입자분산 세라믹스기 복합체의 미세 조직 및 물성에 미치는 영향에 대하여 조사하고자 화학적 방법으로 합성한 $Al_2O_3$/Fe-Ni 나노복합분말을 수소 및 아르곤 가스 분위기, 또한 소결온도 등으로 제어하여 열간가압 소결하였다. 수소분위기에서 소결한 복합체는 아르곤분위기의 경우보다 반응상 $FeAl_2O_4$의 형성이 억제되었으며, 증가된 파괴강도 및 인성 값을 나타내었다. 또한, 소결 온도를 낮추었을 경우 기지상 및 금속 분산상의 미세화와 향상된 기계적 성질을 얻을 수 있었다. 소결 조건에 따른 기계적 특성의 변화는 주로 반응상의 형성과 관련된 미세조직 특성에 의존하는 것으로 해석하였다.
한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
/
pp.1301-1302
/
2006
Sintered composites of Al-8wt%Cu-10vol%SiCp were deformed by repressing or equal channel angular pressing(ECAP) at room temperature, $500^{\circ}C$ and $600^{\circ}C$. Repressing produced more densification than ECAP but resulted in much lower transverse rupture strengths. In both cases, deformation at room temperature and $500^{\circ}C$, resulted in much lower strengths than deformation at $600^{\circ}C$, and also caused the fracturing of some SiC particles. The higher bend strengths and less SiC fracturing at $600^{\circ}C$ are attributable to the presence of an Al-Cu liquid phase during deformation. The employment of copper coated SiC instead of bare SiC particles for preparing the composites was found not improving the properties.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.