Browse > Article
http://dx.doi.org/10.4191/kcers.2017.54.2.02

Sintering and Oxidation of GdB4 Synthesized by B4C Reduction Method  

Sonber, Jitendra Kumar (Materials Processing and Corrosion Engineering Division, Bhabha Atomic Research Centre)
Murthy, Tammana Shri Ram Chandra (Materials Processing and Corrosion Engineering Division, Bhabha Atomic Research Centre)
Sairam, Kannan (Materials Processing and Corrosion Engineering Division, Bhabha Atomic Research Centre)
Kain, Vivekanand (Materials Processing and Corrosion Engineering Division, Bhabha Atomic Research Centre)
Publication Information
Abstract
Gadolinium tetraboride ($GdB_4$) was synthesized by reduction of $Gd_2O_3$ using boron carbide in presence of carbon. Effect of temperature on product quality was investigated. Pure $GdB_4$ powder was obtained in vacuum at $1500^{\circ}C$. Pressureless sintering experiments revealed that sintering takes place only above $1600^{\circ}C$. A maximum density of 77.1% of the theoretical value was obtained at $1800^{\circ}C$ by pressureless sintering. Hot pressing resulted in 95.5% of theoretical density at the lower temperature of $1700^{\circ}C$ under 35 MPa pressure. Hardness and fracture toughness of dense $GdB_4$ were measured and found to be 21.4 GPa and $2.3MPa{\cdot}m^{1/2}$, respectively. After exposure to air at $900^{\circ}C$, the formation of a porous and non-protective oxide layer was observed.
Keywords
$GdB_4$; Synthesis; Hot pressing; Boride; Oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Weidenbaum, E. W. Hoyt, D. L. Zimmerman, W. V. Cummings, K. C. Antony, "Properties of Some High Temperature Control Materials," pp. 315-43 in Materials and Fuels for High Temperature Nuclear Energy Applications. Ed. by M. T. Simnad and M. R. Zumwalt, The M. I. T. Press, Massachusetts, 1962.
2 V. I. Lazorenko, A. P. Galasun, N. I. Siman, A. I. Dmitriev, and A. V. Brodovoi, "Preparation and Properties of $GdB_4$ Single Crystals," Soviet Powder Metall. Met. Ceram., 29 [3] 224-27 (1990).   DOI
3 E. K. Storms and B. A. Mueller, "Thermionic Emission and Atom Vaporization of the Gd-B System," J. Appl. Phys., 52 [4] 2966-70 (1981).   DOI
4 D. M. Goebel, Y. Hirooka, and T. A. Sketchley, "Large-Area Lanthanum Hexaboride Electron Emitter," Rev. Sci. Instrum., 56 [9] 1717-22 (1985).   DOI
5 J. F. Rodriguez, J. A. Blanco, K. Katsumata, A. Kikkawa, F. Iga, and S. Michimura "Experimental Evidence of Noncollinear Magnetism in Gadolinium Tetraboride," Phys. Rev. B, 72 [5] 052407 (2005).   DOI
6 M. T. Garland, J. P. Wiff, J. Bauer, R. Guerin, and J. Y. Saillar, "The X-ray and Electronic Structures of $GdB_4$," Solid State Sci., 5 [5] 705-10 (2003).   DOI
7 A. Baranovskiy and A. Grechnev, "Electronic Structure and Exchange Interactions in $GdB_4$," J. Magn. Magn. Mater., 375 96-9 (2015).   DOI
8 H. Itoh, Y. Tsuzuki, T. Yogo, and S. Naka, "Synthesis of Cerium and Gadolinium Borides Using Boron Cage Compounds as a Boron Source," Mater. Res. Bull., 22 [9] 1259-66 (1987).   DOI
9 J. K. Sonber, K. Sairam, T. S. R. C. Murthy, A. Nagraj, C. Subramanian, and R. C. Hubli, "Synthesis, Densification and Oxidation Study of Lanthanum Hexaboride," J. Eur. Ceram. Soc., 34 [5] 1155-60 (2014).   DOI
10 J. K. Sonber and A. K. Suri, "Syntheis and Densification of $ZrB_2$: Review," Adv. Appl. Ceram., 110 [6] 321-34 (2011).   DOI
11 B. G. Arabei, E. N. Shtrom, and Y. A. Lapitskii, "Characteristics of the Manufacturing Technology of Dense Parts from, and the Mechanical Properties of, Some Hexaborides of the Rare-Earth Metals," Powder Metall. Met. Ceram., 3 [5] 406- 9 (1964).
12 J. K. Sonber, T. S. R. C. Murthy, K. Sairam, B. Paul, and J. K. Chakravartty, "Effect of $TiSi_2$ Addition on Densification of $CeB_6$," Ceram. Int., 42 891-96 (2016).   DOI
13 G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements," J. Am. Ceram. Soc., 64 [9] 533-38 (1981).   DOI
14 J. A. Zaykoski, M. M. Opeka, L. H. Smith, and I. G. Talmy, "Synthesis and Characterization of $YB_4$ Ceramics," J. Am. Ceram. Soc., 94 [11] 4059-65 (2011).   DOI
15 Y. Liu, W. J. Lu, J. N. Qin, and D. Zhang, "A New Route for the Synthesis of $NdB_6$ Powder from $Nd_2O_3-B_4C$ System," J. Alloys Compd., 431 [1] 337-41 (2007).   DOI
16 X. H. Xu, H. N. Xiao, W. M. Guo, P. Z. Gao, and S. H. Peng, "Preparation and Reaction Mechanism of LaB6 Powder by Solid-State Reaction at Atmospheric Pressure," J. Inorg. Mater., 26 417-21 (2011).   DOI
17 J. K. Sonber, T. S. R. C. Murthy, C. Subramanian, R. C. Hubli, and A. K. Suri, "Synthesis, Densification and Characterization of $EuB_6$," Int. J. Refract. Met. Hard Mater., 38 67-72 (2013).   DOI
18 W. Wu, J. Xu, X. Bian, G. Hu, S. Sun, and G. Tu, "Phase Constitution in Mixed $Gd_2O_3$ and B4C by Sintering at High Temperature," J. Rare Earths, 23 [3] 345-34 (2005).
19 M. L. Bauccio, ASM Engineered Materials Reference Book; pp.300-9, ASM International, USA, 1994.
20 E. W. Hoyt, "Rare Earth Borides for Nuclear Applications"; pp.287-89 in Proceedings of the Second Conference on Rare Earth Research. Breach Science Publishers, New York, 1961.
21 P. Dunner, H. J. Heuvel, and M. Horle, "Absorber Materials for Control Rod Systems of Fast Breeder Reactors," J. Nucl. Mater., 124 185-94 (1984).   DOI