Browse > Article
http://dx.doi.org/10.5805/SFTI.2014.16.2.319

Fabrication and Characteristics of Chitosan Non-woven Fabric developed using only water as plasticizer  

Lee, Shin-Hee (Dept. of Clothing & Textiles, Kyungpook National University)
Hsieh, You-Lo (Division of Textiles and Clothing, University of California)
Publication Information
Fashion & Textile Research Journal / v.16, no.2, 2014 , pp. 319-325 More about this Journal
Abstract
This article describes a method for producing chitosan non-woven fabrics by just hot pressing without the use of a binder. A study has been made of the wet spinning of chitosan fiber. The fibers were rinsed thoroughly in running water and chopped wet into staples of with a length of approximately 5-10 mm. The chopped chitosan staples were dispersed uniformly in water and fabricated using a non-woven making machine. This study examined the formation and the characteristics of chitosan non-woven fabrics manufactured by hot pressing without the use of a binder. The effects of the non-woven fabrication conditions on the thermal, morphological, structural, and physical properties of chitosan non-woven fabric with and without water as a plasticizer were studied. The temperature of the exothermic peak, decomposition of chitosan fibers increased with increasing heating rate. Water in the chitosan fiber effectively plasticized the chitosan fiber. The thermal bonded structure of the wet chitosan fiber with water as a plasticizer was clearly found in many parts of the non-woven fabric at a fabrication temperature of $200^{\circ}C$. The intensity and profile of the (100) plane($2{\theta}=10.2^{\circ}$) and (040) plane($2{\theta}=20.9^{\circ}$) in the chitosan non-woven fabric decreases and became smooth in the non-woven fabric formation by melting.
Keywords
chitosan; thermal bonding; non-woven fabric; plasticizer; water;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Crofton, D. J., & Pethrick, R. A. (1982). Dielectric studies of cellulose and its derivatives: 2. Effects of pressure and temperature on relaxation behavior. Polymer, 23(11), 1609-1614.   DOI   ScienceOn
2 Alonso, J. G., Covas, C. P., & Nieto, J. M. (1983). Determination of the degree of acetylation of chitin and chitosan by thermal analysis. Journal of Thermal Analysis and Calorimetry, 28(1), 189-193.   DOI
3 Atureliya, S. K., & Bashir, Z. (1993). Continuous plasticized melt-extrusion of polyacrylonitrile homopolymer. Polymer, 34(24), 5116-5122.   DOI   ScienceOn
4 Carlos, P. C., Waldo, A. M., & Julio, S. R. (1993). A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan. Polymer Degradation and Stability, 39(1), 21-28.   DOI   ScienceOn
5 Gao, Q., Wan, A., & Zhang, Y. (2007). Effect of reacetylation and degradation on the chemical and crystal structures of chitosan. Journal of Applied Polymer Science, 104(4), 2720-2728. doi:10.1002/app.25711   DOI   ScienceOn
6 Grove, D., Desai, P., & Abhiraman, A. S. (1988). Exploratory experiments in the conversion of plasticized melt spun PAN-based precursors to carbon fibers. Carbon, 26(3), 403-411.   DOI   ScienceOn
7 Hasegawa, M., Isogai, A., Onabe, F., Usuda, M., & Atalla, R. H. (1992). Characterization of cellulose-chitosan blend film. Journal of Applied Polymer Science, 45(11), 1873-1879.   DOI
8 Keely, C. M., Zhang, X., & McBrierty, V. J. (1995). Hydration and plasticization effects in cellulose acetate: a solid-state NMR study. Journal of Molecular Structure, 355(1), 33-46.   DOI   ScienceOn
9 Hermans, P. H., & Weidinger, A. (1961). Quantitative investigation of the X-Ray diffraction picture of some typical rayon specimens, Part I. Textile Research Journal, 31(6), 558-571.   DOI
10 Hirano, S., & Moriyama, T. (2004). Some novel N-(carboxyacyl) chitosan filament. Carbohydrate Polymers, 55(3), 245-248.   DOI   ScienceOn
11 Jacek, D., Lidia, S., Magdalena, K., Luba, J., & Ryszard, C. (1990). Structure-bioactivity relationship of chitin derivatives-Part I: The effect of solid chitin derivatives on blood coagulation. Journal of Bioactive and Compatible Polymer, 5(3), 293-299.   DOI
12 Lee, S. H. (2003). Ripening time and fiber formation of chitosan spinning dope. Journal of Applied Polymer Science, 90(10), 2870-2877.   DOI   ScienceOn
13 Lee, S. H. (2000). The mechanism and characteristics of dry-jet-wet spinning of chitosan fibers. Journal of Korean Fiber Society, 37(7), 7-15.
14 Lee, S. H., Kim, M. J., & Park, H. S. (2010). Characteristics of cotton fabrics treated with epichlorohydrin and chitosan. Journal of Applied Polymer Science, 117(2), 623-628. doi:10.1002/app.31351   DOI   ScienceOn
15 Reddy, N., & Yang, Y. (2011). Completely biodegradable soyprotainjute biocomposites developed using water without any chemicals as plasticizer. Industrial Crops and Products, 33(1), 35-41. doi:10.1016/j.indcrop.2010.08.0   DOI   ScienceOn
16 Lee, S. H., Park, S. Y., & Choi, J. H. (2004). Fiber formation and physical properties of chitosan fiber crosslinked by epichlorohydrin in a wet spinning system: The effect of the concentration of the crosslinking agent epichlorohydrin. Journal of Applied Polymer Science, 92(3), 2054-2062.   DOI   ScienceOn
17 Muzzarelli, R. A. A. (2009). Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers, 76(2), 167-182.   DOI   ScienceOn
18 Shalumona, K. T., Binulala, N. S, Sevamurugana, N., Naira, S. V., Menona, D., Furuikeb, T., Tamurab, H., & Jayakumar, R. (2009). Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydrate Polymers, 77(4), 863-869. doi:10.1016/j.carbpol 2009.03.009   DOI   ScienceOn
19 Sergio, T. G., Ocio, M. J., & Lagaron, J. M. (2008). Development of active antimicrobial fiber used chitosan polysaccharide nanostructures using electrospinning. Engineering in Life Sciences, 8(3), 303-314. doi:10.1002/elsc.200700066   DOI   ScienceOn
20 Tokura, S., Baba, S., Uraki, Y., Miura, Y., Nishi, N., & Hasekawa, O. (1990). Carboxymethyl-chitin as a drug carrier of sustained release. Carbohydrate Polymers, 13(3), 273-281.   DOI   ScienceOn
21 Pouplin, M., Redl, A., & Gontard, N. (1999). Glass transition of wheat gluten plasticized with water, glycerol, or sorbitol. Journal of Agricultural and Food Chemistry, 47(2), 538-543.   DOI   ScienceOn
22 Grant, S., Blair, H. S., & Mckay, G. (1989). Structural studies on chitosan other chitin derivatives. Macromolecular Chemistry and Physics, 190(9), 2279-2286.   DOI