• 제목/요약/키워드: hot spot formation

검색결과 18건 처리시간 0.022초

Coupled temperature-displacement modeling to study the thermo-elastic instability in disc brakes

  • Ramkumar, E.;Mayuram, M.M.
    • Coupled systems mechanics
    • /
    • 제1권2호
    • /
    • pp.165-182
    • /
    • 2012
  • Macroscopic hot spots formed due to the large thermal gradients at the surface of the disc brake rotor, make the rotor to fail or wear out early. Thermo-elastic deformation results in contact concentration, leading to the non uniform distribution of temperature making the disc susceptible to hot spot formation. The formation of one hot spot event will predispose the system to future hot spotting at the same location. This leads to the complete thermo-elastic instability in the disc brakes; multitude parameters are responsible for the thermo elastic instability. The predominant factor is the sliding velocity and above a certain sliding velocity the instability of the brake system occurs and hot spots is formed in the surface of the disc brake. Commercial finite element package ABAQUS(R) is used to find the temperature distribution and the result is validated using Rowson's analytical model. A coupled analysis methodology is evolved for the automotive disc brake from the transient thermo-elastic contact analysis. Temperature variation is studied under different sliding speeds within the operation range.

디스크 브레이크 마찰표면의 적열점에 관한 수치적 연구 (Numerical Study on the Hot Spots of Friction Surface in Disk Brakes)

  • 김청균;조승현
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1692-1696
    • /
    • 2004
  • This paper presents the thermally induced hot spot characteristics of rubbing surface in the friction pad disk brake. During the braking period, the rubbing surface with irregular asperities that are strongly engaged in rough surface, wear, and deformed surface due to a friction heating may produce an irregular distorted geometry of the disk surface. The tribological interactions between the disk and the pads are unstable if the contact stress is severe, in which the irregularity develops the contact pressure distribution, leading eventually to localized contact, high temperature and formation of hot spots. The computed results of contact spots that are simulated using a coupled thermal-mechanical analysis present sinusoidal distortions and localized extrusions of the disk surface, which are strongly related to a hot spot in the practical disk brake.

유한 요소법을 이용한 자동차용 디스크 브레이크의 열간 저더 해석 (Analysis of Hot Judder of Disc Brakes for Automotives by Using Finite Element Method)

  • 정성필;박태원;정원선
    • 대한기계학회논문집A
    • /
    • 제35권4호
    • /
    • pp.425-431
    • /
    • 2011
  • 차량 제동시 디스크와 패드사이의 미끄럼 접촉에 의해 발생하는 마찰열은 재질의 열 탄성 변형을 일으키고, 이는 접촉면의 압력 분포에 영향을 끼친다. 이러한 열탄성 불안정성 (Thermo-Elastic Instability, TEI)은 디스크의 고유 진동모드와 결합되어 열섬 현상 및 열간 저더 진동을 발생시킨다. 본 연구에서는 상용 유한 요소 해석 프로그램인 SAMCEF 를 이용하여 자동차용 통풍식 디스크에 대한 3 차원 열간 저더 해석을 수행하였다. Staggered approach 에 의거한 중간 처리기를 이용하여 구조-동역학 해석 결과와 열 전달 해석 결과를 교환하였다. 디스크 표면에 열섬이 발생하는 것을 확인하였고, 이를 디스크 고유 진동 모드와 비교함으로써 모드 형상과 열섬 분포의 관계를 분석하였다.

태양전지 모듈의 열적 특성에 관한 연구 (A Study on the Thermal Characteristics of Photovoltaic Modules)

  • 김종필;박현우;전충환;장영준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.121-123
    • /
    • 2008
  • The PV modules are affected by heat. The hotter the PV module, the lower the power output, then the life time will be short. If the cell temperature rises above a certain limit the encapsulating materials can be damaged, and this will degrade the performance of the PV module. This is called the ‘hot spot’ formation. This paper presents that the PV module temperature can be estimated by using a thermal analysis program, and demonstrates the thermal characteristics of the PV module.

  • PDF

Computational Investigation of Lightning Strike Effects on Aircraft Components

  • Ranjith, Ravichandran;Myong, Rho Shin;Lee, Sangwook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.44-53
    • /
    • 2014
  • A lightning strike to the aircraft seriously affects the aircraft and its components in various ways. As one of the most critical threats to the flight safety of an aircraft, fuel vapour ignition by lightning can occur through various means, notably through hot spot formation on the fuel tank skins. In this study, a coupled thermal-electrical approach using the commercial software ABAQUS is used to study the effects of a lightning strike on aircraft fuel tanks. This approach assumes that the electrical conductivity of a material depends on temperature, and that a temperature rise in a material due to Joule heat generation depends on electrical current. The inter-dependence of thermal and electrical properties-the thermal-electrical coupling-is analyzed by a coupled thermal-electrical analysis module. The analysis elucidates the effects of different material properties and thicknesses of tank skins and identifies the worst case of lightning zones.

서태평양 캐롤라인군도 웨노섬 알칼리 현무암류의 지구화학 및 K-Ar 연대 (Geochemistry and K-Ar Age of Alkali Basalts from Weno Island, Caroline Islands, Western Pacific)

  • 이종익;허순도;박병권;한상준
    • Ocean and Polar Research
    • /
    • 제23권1호
    • /
    • pp.23-34
    • /
    • 2001
  • Geochemical and Sr-Nd isotopic compositions and K-Ar ages are analyzed in volcanic rocks from Weno Island, Caroline Islands. Seven Weno lava samples of alkali basalt and basaltic trachyandesite are aphyric or sparsely phyric comprising olivine, plagioclase, and clinopyroxene phenocrysts. Whole-rock geochemical variation of Weno lavas reflects main fractional crystallization of olivine and Cr-spinel phenocrysts. Newly determined K-Ar ages of Weno lavas range from 6.7 to 11.3 Ma (late Miocene), indicating their formation during primary volcanic stage of Chuuk Islands. Trace element compositions of Weno lavas are very similar to those of typical ocean island basalts (OIBs), suggesting their formation during intra-plate mantle plume activity. The plume composition is isotopically very similar to that of Hawaiian hot spot. However, the age span of Chuuk volcanism is longer than that of the other individual volcanoes in the Pacific.

  • PDF

Effect of under-bump-metallization structure on electromigration of Sn-Ag solder joints

  • Chen, Hsiao-Yun;Ku, Min-Feng;Chen, Chih
    • Advances in materials Research
    • /
    • 제1권1호
    • /
    • pp.83-92
    • /
    • 2012
  • The effect of under-bump-metallization (UBM) on electromigration was investigated at temperatures ranging from $135^{\circ}C$ to $165^{\circ}C$. The UBM structures were examined: 5-${\mu}m$-Cu/3-${\mu}m$-Ni and $5{\mu}m$ Cu. Experimental results show that the solder joint with the Cu/Ni UBM has a longer electromigration lifetime than the solder joint with the Cu UBM. Three important parameters were analyzed to explain the difference in failure time, including maximum current density, hot-spot temperature, and electromigration activation energy. The simulation and experimental results illustrate that the addition 3-${\mu}m$-Ni layer is able to reduce the maximum current density and hot-spot temperature in solder, resulting in a longer electromigration lifetime. In addition, the Ni layer changes the electromigration failure mode. With the $5{\mu}m$ Cu UBM, dissolution of Cu layer and formation of $Cu_6Sn_5$ intermetallic compounds are responsible for the electromigration failure in the joint. Yet, the failure mode changes to void formation in the interface of $Ni_3Sn_4$ and the solder for the joint with the Cu/Ni UBM. The measured activation energy is 0.85 eV and 1.06 eV for the joint with the Cu/Ni and the Cu UBM, respectively.

자동차용 디스크 브레이크의 열탄성 불안정성에 관한 연구 (Study on Thermoelastic Instability of Automotive Disc Brakes)

  • 최지훈;김도형;이인
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.315-322
    • /
    • 2001
  • This paper is focused on the frictionally induced thermoelastic instability (TEI) in automotive disk brakes. This instability leads to the formation of localized high temperature contact regions known as hot spots. This article investigates the themoelastic instability in automotive disk brake systems consisting of a finite thickness layer (disk) and two half-planes (pads) using a perturbation method. The antisymmetric mode involves hot spots located alternately on two sides of the disk. As a result the circumferentially periodic hot spots produce rotor surface distortion and Induce low frequency vibration. Also the effects of system parameters on the critical speed for TEI are investigated.

  • PDF

Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구 (Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF

핫스템핑 공정에서 가열온도 및 유지시간을 고려한 22MnB5의 단일겹치기 저항 점용접 조건 최적화 (Optimization of Resistance Spot Weld Condition for Single Lap Joint of Hot Stamped 22MnB5 by Taking Heating Temperature and Heating Time into Consideration)

  • 최홍석;김병민;박근환;임우승;이선봉
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1367-1375
    • /
    • 2010
  • 본 연구에서는 핫스템핑 소재로 사용되는 보론합금강판 22MnB5의 단일 겹치기 점용접에서 용접부의 강도 향상을 위한 최적화를 수행하였다. 최적화 과정은 다구찌 실험계획법에 의해 행해졌으며 공정변수는 전류, 가압력 및 통전시간으로 선정하였고, 잡음인자로서 핫스템핑 시 소재의 가열온도와 유지시간을 고려하였다. 가열조건에 따라 22MnB5 표면의 알루미늄 도금층과 모재 간의 확산반응에 의해 화합물층 두께에 산포가 발생하였으며 이러한 산포는 너겟의 형성에 영향을 미치는 것을 알 수 있었다. 한편 용접부의 인장전단강도를 목적함수로 하였을 때, 이러한 가열조건에 강건한 최적의 용접 조건은 전류 8kA, 가압력 4kN, 통전시간 18cycle로 선정되었다. 최적 조건의 검증 결과 용접부의 인장전단강도 는 32kN으로서 요구되는 규격인 23kN보다 크게 증가되었다.