• Title/Summary/Keyword: hot forming

Search Result 450, Processing Time 0.025 seconds

Corrosion analysis for application of CCO thin films to industrial equipment materials (산업 설비 재료에 CCO박막의 적용을 위한 부식성 분석)

  • Baek, Min Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.98-103
    • /
    • 2018
  • Many coating technologies have been developed so far to improve the corrosion resistance, strength, abrasion resistance and other surface properties of materials and equipment. Among them, the formation of CCO (CaCoO, then CCO) thin films has been studied and used in the electronic material field. One of the characteristics of CCO thin films is that it is resistant to high temperature heat. Particularly, the method of forming the CCO thin film is relatively simple, and it was judged that it could be introduced into the existing equipment. Therefore, in this study, an experiment and analysis were carried out to determine whether the coating of CCO thin films can be applied to hot dip galvanizing facilities. A CCO thin film was formed on the surface of STS304 base material and oxidized in a Zn fume atmosphere in a $650^{\circ}C$ furnace with an air atmosphere. Oxidation was carried out for 30 days, after which the shape of the CCO thin film was confirmed by SEM and its corrosivity was analyzed through a potentiodynamic polarization experiment.

Manufacture of $\beta-SiC-TiB_2$ Composites Densified by Liquid-Phase Sintering (액상소결에 의한 $\beta-SiC-TiB_2$ 복합체의 제조와 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Park, Mi-Lim;So, Byung-Moon;Lim, Seung-Hyuk;Song, Joon-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.479-481
    • /
    • 2000
  • The effect of $Al_{2}O_{3}+Y_{2}O_{3}$ additives on fracture toughness of $\beta-SiC-TiB_2$ composites by hot-pressed sintering were investigated. The f$\beta-SiC-TiB_2$ ceramic composites were hot-presse sintered and annealed by adding 16, 20, 24wt% $Al_{2}O_{3}+Y_{2}O_{3}$(6 : 4wt%) powder as a liquid forming additives at low temperature($1800^{\circ}C$) for 4h. In this microstructures, the relative density is over 95.88% of the theoretical density and the porosity increased with increasing $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation. The fracture toughness showed the highest of $5.88MPa{\cdot}m^{1/2}$ for composites added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. The electrical resistivity showed the lowest of $5.22{\times}10^{-4}\Omega{\cdot}cm$ for composite added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature and is all positive temperature coefficient resistance (PTCR) against temperature up to $700^{\circ}C$.

  • PDF

A Study on Improvement of Fracture Toughness of $\beta-SiC-ZrB_2$Composites ($\beta-SiC-ZrB_2$ 복합체의 파괴인성 증진연구)

  • Shin Yong-Deok;Ju, Jin-Young;Yoon, Se-Won;Hwang, Chul;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.291-294
    • /
    • 1999
  • The effect of AI$_2$O$_3$+Y$_2$O$_3$additives on fracture toughness of $\beta$-SiC-ZrB$_2$composites by hot-pressed sintering were Investigated. The $\beta$-SiC-ZrB$_2$ ceramic composites were hot-presse sintered and annealed by adding 1, 2, 3wt% AI$_2$O$_3$+Y$_2$O$_3$(6:4wt%) powder as a liquid forming additives at 195$0^{\circ}C$ for 4h. In this microstructures, no reactions were observed between $\beta$-SiC and ZrB$_2$, and the relative density Is over 90.79% of the theoretical density and the porosity decreased with increasing AI$_2$O$_3$+Y$_2$O$_3$ contents. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed the highest of 5.5328MPa . m$^{1}$2/ for composites added with 2wt% AI$_2$O$_3$+Y$_2$O$_3$ additives at room temperature. But the standard deviation of fracture toughness of specimens decreased with increasing AI$_2$O$_3$+Y$_2$O$_3$ contents and showed the highest of 0.8624 for composite tilth 1wt%, AI$_2$O$_3$+Y$_2$O$_3$additives.

  • PDF

Manufacture and Properties of ${\beta}$-SIC-TiB$_2$ Composites Densified by Pressureless Annealing (無加壓 열처리에 의한 ${\beta}$-SIC-TiB$_2$ 複合體의 製造와 特性)

  • Shin, Yong-Deok;Ju, Jin-Young;Park, Mi-Lim
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.221-225
    • /
    • 2001
  • The effect of $Al_2O_3+Y_2O_3$ additives on fracture toughness of ${\beta}-SiC-TiB_2$ composites by hot-pressed sintering was investigated. The ${\beta}-SiC-TiB_2$ ceramic composites were hot-press sintered and pressureless-annealed by adding 16, 20, 24 wt% ${\beta}-SiC-TiB_2$(6:4 wt%) powder as a liquid forming additives at low temperature(1800 $^{\circ}C$) for 4 h. Phase analysis of composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and YAG($Al_5Y_3O_{12}$). The relative density was over 95-88 % of the theoretical density, and the porosity increased with increasing $Al_2O_3+Y_2O_3$ contents because of the increasing tendency of pore formation. The fracture toughness showed the highest value of 5.88 MPa${\cdot}m^{1/2}$ for composites added with 20 wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity showed the lowest value of $5.22{\times}10^{-4}\;{\Omega}\;{\cdot}\;cm$ for composite added with 20 wt% $Al_2O_3+Y_2O_3$ additives at room temperature, and was all positive temperature coefficeint resistance(PTCR) against temperature up to 900 $^{\circ}C$.

  • PDF

Fermentation Properties of Irradiated Kochujang (방사선 조사 고추장의 발효 특성)

  • Kim, Moon-Sook;Oh, Jin-A;Kim, In-Won;Shin, Dong-Hwa;Han, Min-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.934-940
    • /
    • 1998
  • Kochujang, fermented hot pepper soybean paste, was prepared by traditional method, and irradiated with gamma ray of $^{60}Co{\;}up{\;}to{\;}15{\pm}1.5{\;}kGy$ for confirming main factor of kochujang fermentation. Nonirradiated (control) and irradiated samples kochujang were fermented at $25^{\circ}C$ and analyzed biochemical properties including enzyme activities and viable cell count during fermentation for 60 days. The total viable count in irradiated kochujang decreased to $10^4{\;}CFU/g$ which was $10^8{\;}CFU/g$ in the control. Because of a little changing enzyme activities of ${\alpha}{\cdot}{\beta}{\;}amylase$ and acid neutral protease by irradiation at the above level, amino type nitrogen which is the main quality reference of kochujang was comparable to the control. By irradiation, gas production was completely stopped which is one of biggest problems during distribution of kochujang. Total volume of gas produced at $25^{\circ}C$ from the control kochujang was 453 mL/100 g which was composed of over 90% of $CO_2$. The odor of irradiated kochujang was inferior to the control which seemed to be related to reduced microbial populations.

  • PDF

Unsteady Ignition in the Pulse Combustor with Counter Jet Flows (대향분출류가 있는 맥동연소기의 비정상 점화현상)

  • 이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.64-72
    • /
    • 1997
  • An analytical study has been performed to investigate the unsteady ignition characteristics of pulse combustion. In many combustion applications, strain rate of the flow can significantly affect the combustion features; ignition, extinction, and reignition. In the pulse combustion, two jets (hot combustion gases and fresh mixtures) coming from the opposite side of the combustor will collide in the combustor forming a stagnation region where the chemical reaction is suppressed by the strain rate until this becomes below the critical value. In this research, the method of large activation energy asymptotic is adopted with one step irreversible kinetics to examine the ignition response to the periodic variation of the strain rate of flow. The results show the variation of the maximum value of strain rate can determine whether the ignition or extinction occur.

  • PDF

An Implementation of Fuzzy Automatic Gauge Control for the Plate Steel Rolling Process (후판 압연공정에서 퍼지 두께제어 구현)

  • Hur, Yone-Gi;Choi, Young-Kiu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.634-640
    • /
    • 2009
  • The plate manufacturing processes are composed of the reheating furnace, finishing mill, cooling process and hot leveling. The finishing rolling mill (FM) as a reversing mill has produced the plate steel through multiple pass rolling. The automatic gauge control (AGC) is employed to maintain the thickness tolerance. The high grade products are forming greater parts of the manufacturing and customers are requiring strict thickness margin. For this reason, the advanced AGC method is required instead of the conventional AGC based on the PI control. To overcome the slow response performance of the conventional AGC and the thickness measurement delay, a fuzzy AGC based on the thickness deviation and its trend is proposed in this paper. An embedded controller with the fuzzy AGC has been developed and implemented at the plate mill in POSCO. The fuzzy AGC has dynamically controlled the roll gap in real time with the programmable logic controller (PLC). On line tests have been performed for the general and TMCP products. As the results, the thickness deviation range (maximum - minimum of the inner plate) is averagely from 0.3 to 0.1 mm over the full length. The fuzzy AGC has improved thickness deviation and completely satisfied customer needs.

Effects of Minor Alloying Elements on the Mechanical Properties and Formability of Mg-3%Zn-0.5%Sn Base Sheet Alloys (Mg-3%Zn-0.5%Sn계 판재합금의 기계적 성질과 성형성에 미치는 미량합금원소의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ha-Young;Kim, Ki-Tae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2008
  • A variety of minor alloying elements such as Zr, Sr, Y, and Gd were added to Mg-3%Zn-0.5%Sn base alloy to form various fine precipitates and their effects on the microstructure, tensile properties, and sheet metal formability were investigated. Various very fine precipitates along with fine second phases were observed by the additions. It was found that Zr or Gd additive has a role to suppress the grain coarsening of alloy sheets during the hot working process. The Zr-added alloy showed the highest tensile elongation at $250^{\circ}C$ whereas the Gd-added alloy exhibited the best sheet metal forming characteristics in terms of CCV (conical cup value) and spring-back tendency.

Developing Trends of Spinning Process for Manufacturing Thrust Chamber of Launch Vehicle (발사체 연소기 제작에서 스피닝 공정 개발 동향)

  • Lee, Keumoh;Ryu, Chulsung;Choi, Hwanseok;Heo, Seongchan;Kwak, Junyoung;Choi, Younho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.64-71
    • /
    • 2015
  • Spinning process is generally used for manufacturing axisymmetrical, thin-walled thickness and hollow circular cross-section parts. Traditional spinning technology is classified to conventional spinning and power spinning(shear spinning and flow forming). Literature surveys of spinning application for regenerative cooling chamber and divergent nozzle of liquid propellent rocket thrust chamber have been conducted. Most spinning technology has been used mandel for manufacturing chamber and nozzle. Recently, hot spinning has been used much compared to traditional cold spinning.

Synthesis of Polymer-Carbon Nanotubes Composite Nanoparticles and Their Applications into Forming Hybrid Composite Thin Films (폴리머-탄소나노튜브 복합체 에어로졸 입자의 생성 및 이를 이용한 하이브리드 복합체 박막 제조)

  • Kim, Whi-Dong;Ahn, Ji-Young;Kim, Soo Hyung
    • Particle and aerosol research
    • /
    • v.6 no.2
    • /
    • pp.61-67
    • /
    • 2010
  • In this paper, we describe a new method to form polymer thin films, in which carbon nanotubes (CNTs) are homogeneously distributed so that they can strengthen the mechanical property of resulting polymer film. To do so, we first homogeneously mixed CNTs with polymer in a DMF solvent. With the assistance of ultrasonic nebulizer, the polymer/CNT solution was then aerosolized into micro-sized droplets and finally turned into solidified polymer/CNT composite particles by gas-phase drying process. As the results of SEM and TEM analysis, CNTs were found to be homogeneously immobilized in the polymer matrix particles due to rapid drying process in the gas phase. For comparison purpose, (i) the polymer/CNTs composite particles prepared by aerosol processing method and (ii) polymer/CNTs sheets prepared by simple solution-evaporation method were employed to form polymer/CNTs composite thin films using a hot press. As the result, the aerosol processing of composite particles was found to be a much more effective method to form homogeneously distributed-CNTs in the polymer matrix thin film.