• Title/Summary/Keyword: host fungi

Search Result 252, Processing Time 0.022 seconds

Synergistic Effects of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria for Sustainable Agricultural Production

  • Ramasamy, Krishnamoorthy;Joe, Manoharan Melvin;Kim, Ki-Yoon;Lee, Seon-Mi;Shagol, Charlotte;Rangasamy, Anandham;Chung, Jong-Bae;Islam, Md. Rashedul;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.637-649
    • /
    • 2011
  • Soil microorganisms play a major role in improving soil fertility and plant health. Symbiotic arbuscular mycorrhizal fungi (AMF) form a key component of the soil microbial populations. AMF form a mutualistic association with the host plant and exert a positive influence on its growth and nutrient uptake. The establishment of mycorrhizal symbioses with the host plant can positively be influenced by plant growth promoting rhizobacteria through various mechanisms such as increased spore germination and hyphal permeability in plant roots. Though there are evidences that combined interactions between AMF and PGPR can promote the plant growth however mechanisms of these interactions are poorly understood. Better understanding of the interactions between AMF and other microorganisms is necessary for maintaining soil fertility and enhancing crop production. This paper reviews current knowledge concerning the interactions between AMF and PGPR with plants and discusses on enhanced nutrient availability, biocontrol, abiotic stress tolerance and phytoremediation in sustainable agriculture.

Diversity Analysis of Endophytic Fungi Isolated from the Roots of Coastal Plants in Taean Peninsula (태안반도에 자생하는 해안식물 뿌리에서 분리한 내생진균의 다양성 분석)

  • You, Young-Hyun;Yoon, Nam-Gyeong;Yoon, Hyeokjun;Kim, Hyun;Lim, Sung Hwan;Choo, Yeon-Sik;Kim, Jong-Guk
    • The Korean Journal of Mycology
    • /
    • v.42 no.1
    • /
    • pp.79-85
    • /
    • 2014
  • Forty-two endophytic fungi were isolated from the roots of coastal plants, such as Aster sphathulifolius Maxim., Aster tripolium L., Phragmites australis, and Puccinellia nipponica Ohwi, naturally growing in Taean peninsula. The identity of the endophytic fungal strains was analyzed using the sequence of internal transcribed spacer regions. All fungi belonged to the phylum Ascomycota, and they were classified into eight orders (Botryosphaeriales, Capnodiales, Diaporthales, Dothideales, Eurotiales, Helotiales, Hypocreales, and Pleosporales) and thirteen genera (Alternaria, Aureobasidium, Cadophora, Cladosporium, Davidiella, Diaporthe, Fusarium, Gibberella, Macrophomina, Metarhizium, Neosartorya, Penicillium, and Phoma). Among the analyzed fungi, the fungi belonging to the genus Penicillium in Eurotiales were the most widely distributed. The host plant Aster tripolium L. was found to contain the most diverse endophytic fungal species among the coastal plants.

Bioactive Compound Produced by Endophytic Fungi Isolated From Pelargonium sidoides Against Selected Bacteria of Clinical Importance

  • Manganyi, Madira Coutlyne;Tchatchouang, Christ-Donald K.;Regnier, Thierry;Bezuidenhout, Cornelius Carlos;Ateba, Collins Njie
    • Mycobiology
    • /
    • v.47 no.3
    • /
    • pp.335-339
    • /
    • 2019
  • Endophytic fungi have the ability to live inside the host plant tissues without causing neither symptoms of diseases/or harm. Opportunistic infections are accountable for majority of the outbreaks, thereby putting a burden on the health system. To investigate and characterize the bioactive compounds for the control of bacteria of clinical importance, extracts from endophytic fungi were isolated from indigenous South African medicinal plants. Extracts from endophytic fungi were isolated from 133 fungal strains and screened against Gram positive and negative bacteria namely Bacillus cereus, Escherichia coli, Enterococcus faecium, and E. gallinarum using disk diffusion. Furthermore, gas chromatography-mass spectrometry was performed to identify the bioactive compounds. Sixteen out of one hundred and thirty-three (12%) fungi extracts exhibited antibacterial properties against some of the selected bacteria. E. coli was found to be the most susceptible in contrast to E. faecium and E. gallinarum which were the most resistant. The isolate MHE 68, identified as Alternaria sp. displayed the greater spectrum of antibacterial activities by controlling selected clinical bacteria strains including resistant E. faecium and E. gallinarum. The chemical analysis of the extract from MHE 68 indicated that linoleic acid (9,12-octadecadienoic acid (Z,Z)) and cyclodecasiloxane could be accountable for the antibacterial activity. This is the first study conducted on the secondary metabolites produced by endophytic fungal strains isolated from the Pelargonium sidoides DC. possessing antibacterial properties.

Ascophyllum and Its Symbionts. VII. Three-way Interactions Among Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) and Vertebrata lanosa (Rhodophyta)

  • Garbary, David J.;Deckert, Ron J.;Hubbard, Charlene B.
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.353-361
    • /
    • 2005
  • Ascophyllum nodosum (L.) Le Jolis has a systemic infection with the ascomycete Mycophycias ascophylli (Cotton) Kohlmeyer and Volkmann-Kohlmeyer with which it establishese a mutualistic symbiosis. In addition, A. nodosum is the host for the obligate red algal epiphyte, Vertebrata lanosa (L.) Christensen. Using light and electron microscopy we describe morphological and cytochemical changes occurring as a consequence of rhizoid penetration of V. lanosa into cortical host tissue. Rhizoids induce localized cell necrosis based on physical damage during rhizoid penetration. Host cells adjacent to the rhizoid selectively undergo a hypersensitive reaction in which they become darkly pigmented and become foci for hyphal development. Light and electron microscopy show that M. ascophylli forms dense hyphal aggregations on the surface of the V. lanosa rhizoid and extensive endophytic hyphal growths in the rhizoid wall. This is the first morphological evidence of an interaction between M. ascophylli and V. lanosa. We speculate that M. ascophylli may be interacting with V. lanosa to limit tissue damage to their shared host. In addition, the fungus provides a potential pathway for the transfer of materials (e.g., nutrients and photosynthate) between the two phototrophs.

Microbial Components and Effector Molecules in T Helper Cell Differentiation and Function

  • Changhon Lee;Haena Lee;John Chulhoon Park;Sin-Hyeog Im
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.7.1-7.27
    • /
    • 2023
  • The mammalian intestines harbor trillions of commensal microorganisms composed of thousands of species that are collectively called gut microbiota. Among the microbiota, bacteria are the predominant microorganism, with viruses, protozoa, and fungi (mycobiota) making up a relatively smaller population. The microbial communities play fundamental roles in the maturation and orchestration of the immune landscape in health and disease. Primarily, the gut microbiota modulates the immune system to maintain homeostasis and plays a crucial role in regulating the pathogenesis and pathophysiology of inflammatory, neuronal, and metabolic disorders. The microbiota modulates the host immune system through direct interactions with immune cells or indirect mechanisms such as producing short-chain acids and diverse metabolites. Numerous researchers have put extensive efforts into investigating the role of microbes in immune regulation, discovering novel immunomodulatory microbial species, identifying key effector molecules, and demonstrating how microbes and their key effector molecules mechanistically impact the host immune system. Consequently, recent studies suggest that several microbial species and their immunomodulatory molecules have therapeutic applicability in preclinical settings of multiple disorders. Nonetheless, it is still unclear why and how a handful of microorganisms and their key molecules affect the host immunity in diverse diseases. This review mainly discusses the role of microbes and their metabolites in T helper cell differentiation, immunomodulatory function, and their modes of action.

Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

  • Zheng, You-Kun;Miao, Cui-Ping;Chen, Hua-Hong;Huang, Fang-Fang;Xia, Yu-Mei;Chen, You-Wei;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • Background: Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods: A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results: A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

Production of the Wild Entomopathogenic Fungi, Cordyceps militaris, in the Silkworm, Bombyx mori

  • Lee, Sang-Mong;Park, Nam-Sook;Cho, Sae-Yun;Hwang, Jae-Sam;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.3 no.1
    • /
    • pp.105-108
    • /
    • 2001
  • The wild entomopathogenic fungi, Cordyceps militaris, were collected at the Whawang mountain, Korea. The pupae of the silkworm, Bombyx mori, were used as infecting hosts for the production of the silkworm-mili-taris dongchunhacho, silkworm vegetable wasps and plant worms with C. militaris. Three inoculation methods in terms of injection, spray and immersion were tested against the silkworm pupae. The three inocu1ation methods revealed 100% infectivity to the silkworm pupae tested. Of the three inoculation methods, the injection method was highly effective in the reduction of the period required for the endosclerotium and the completion of fruiting body formation. These results indicate that the silkworm pupae are very effective host insects for the production of C. militaris.

  • PDF

Effects of Photoperiods on the Growth of the Entomopathogenic Fungi, Paecilomyces japonica, During the Production of the Silkworm-dongchunghacho, Silkworm Vegetable Wasp and Plant Worm

  • Lee, Eun-Ha;Park, Nam-Sook;Park, Sang-Bong;Lee, Ho-Oung;Jang, Chang-Sic;Jin, Byung-Rae;Lee, Sang-Mong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.1
    • /
    • pp.83-86
    • /
    • 2001
  • Effects of photoperiods, 24L or 24D, on the growth of the silkworm-dongchunghacho, the silkworm vegetable wasp and plant worm, were investigated. Exposure of the fungi under the photoperiod of 24L for at least 3 days during the cultivation of the fungi after the completion of endosclerotium in the host accelerated the spore formations but the growth of the fruiting bodies was inhibited. On the contrary, the photoperiod of 24D inhibited the spore formation, but accelerated the growth of fruiting bodies without spores. Accordingly, to produce silkworm vegetable wasp and plant worm of large-size fruiting bodies with over 3 cm in length, it is indicated that recommendable light condition is a photoperiod of 24D during the cultivation until the length of the fruiting body arrives at over 3 cm.

  • PDF

Diversity of Endophytes Isolated from Thuja koraiensis Nakai in the Korean Peninsula (눈측백(Thuja koraiensis Nakai)에서 분리한 내생균의 다양성)

  • Eo, Ju-Kyeong;Lee, Bong-Hyung;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.44 no.2
    • /
    • pp.113-117
    • /
    • 2016
  • The biodiversity of endophytic fungi on Thuja koraiensis in Mt. Hwaak, Seorak, and Hambaek, Korea was investigated. For the 202 isolates collected from the host trees, internal transcribed spacer rDNA region sequences-based analysis identified 32 taxa; 61.5% of the isolates belonged to Dothideomycetes, 27.0% belonged to Sordariomycetes, and 11.5% belonged to Leotiomycetes. This composition rate is somewhat different from that reported in previous studies for endophytic fungi inhabiting trees of the family Pinaceae. In particular, Phyllosticta spinarum in Dothideomycetes is a dominant species among the diverse endophytes of T. koraiensis. Therefore, further critical research is required for this species.

Molecular Identification of Arbuscular Mycorrhizal Fungal Spores Collected in Korea

  • Lee, Jai-Koo;Park, Sang-Hyeon;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • Arbuscular mycorrhizas (AM) have mutualistic symbiosis with plants and thus efforts have been placed on application of these symbiotic relationships to agricultural and environmental fields. In this study, AM fungi were collected from 25 sites growing with 16 host plant species in Korea and cultured with Sorghum bicolor in greenhouse condition. AM fungal spores were extracted and identified using both morphological and molecular methods. Using morphological characters, total 15 morpho-speices were identified. DNA was extracted from single spore of AM fungi and a partial region on 18S rDNA was amplified using nested PCR with AM fungal specific primers AML1/AML2. A total of 36 18S rDNA sequences were analyzed for phylogenetic analysis and 15 groups of AM fungi were identified using both morphological and molecular data of spores. Among the species, 4 species, Archaeospora leptoticha, Scutellospora castanea, S. cerradensis, S. weresubiae were described for the first time in Korea and two species in Glomus and a species in Gigaspora were not identified. Morphological and molecular identification of AM fungal spores in this study would help identify AM fungal community colonizing roots.