• 제목/요약/키워드: host defense

검색결과 317건 처리시간 0.027초

Molecular and Cellular Mechanisms of Syndecans in Tissue Injury and Inflammation

  • Bartlett, Allison H.;Hayashida, Kazutaka;Park, Pyong Woo
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.153-166
    • /
    • 2007
  • The syndecan family of heparan sulfate proteoglycans is expressed on the surface of all adherent cells. Syndecans interact with a wide variety of molecules, including growth factors, cytokines, proteinases, adhesion receptors and extracellular matrix components, through their heparan sulfate chains. Recent studies indicate that these interactions not only regulate key events in development and homeostasis, but also key mechanisms of the host inflammatory response. This review will focus on the molecular and cellular aspects of how syndecans modulate tissue injury and inflammation, and how syndecans affect the outcome of inflammatory diseases in vivo.

Latest Comprehensive Knowledge of the Crosstalk between TLR Signaling and Mycobacteria and the Antigens Driving the Process

  • Kim, Jae-Sung;Kim, Ye-Ram;Yang, Chul-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권10호
    • /
    • pp.1506-1521
    • /
    • 2019
  • Tuberculosis, which is caused by Mycobacterium tuberculosis (Mtb), is among the most pressing worldwide problems. Mtb uniquely interacts with innate immune cells through various pattern recognition receptors. These interactions initiate several inflammatory pathways that play essential roles in controlling Mtb pathogenesis. Although the TLR signaling pathways have essential roles in numerous host's immune defense responses, the role of TLR signaling in the response to Mtb infection is still unclear. This review presents discussions on host-Mtb interactions in terms of Mtb-mediated TLR signaling. In addition, we highlight recent discoveries pertaining to these pathways that may help in new immunotherapeutic opportunities.

Ameliorative effects of ginseng and ginsenosides on rheumatic diseases

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.335-341
    • /
    • 2019
  • Background: Inflammation is a host-defensive innate immune response to protect the body from pathogenic agents and danger signals induced by cellular changes. Although inflammation is a host-defense mechanism, chronic inflammation is considered a major risk factor for the development of a variety of inflammatory autoimmune diseases, such as rheumatic diseases. Rheumatic diseases are systemic inflammatory and degenerative diseases that primarily affect connective tissues and are characterized by severe chronic inflammation and degeneration of connective tissues. Ginseng and its bioactive ingredients, genocides, have been demonstrated to have antiinflammatory activity and pharmacological effects on various rheumatic diseases by inhibiting the expression and production of inflammatory mediators. Methods: Literature in this review was searched in a PubMed site of National Center for Biotechnology Information. Results: The studies reporting the preventive and therapeutic effects of ginseng and ginsenosides on the pathogenesis of rheumatic diseases were discussed and summarized. Conclusion: Ginseng and ginsenosides play an ameliorative role on rheumatic diseases, and this review provides new insights into ginseng and ginsenosides as promising agents to prevent and treat rheumatic diseases.

Proteomic Analysis of Cytokine-Like Proteins Secreted from Human Bronchial Epithelial Cells in Response to Pathogenic Bacterial Infection

  • Park, Mi-Ja;Oh, Mi-Jung;Jo, Dong-Hwan;Chin, Mi-Reyoung;Lee, Ji-Yeon;Park, Ji-Woo;Lee, Na-Gyong;Kim, Dae-Kyong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.111.1-111.1
    • /
    • 2003
  • Bacterial infection is a very complex process in which both pathogens and host cells play crucial roles, and the host cells undergo drastic changes in their physiology, releasing various proteins in response to the pathogenic infection. Human airway epithelial surface serves as a first line of defense against microorganisms and the external environment. It is well known that bronchial epithelial cells secrete various chemokines and cytokines such as IL-6 and IL-8 to cope with various respiratory pathogens. (omitted)

  • PDF

호스트 기반 침입 탐지 데이터 분석 비교 (A Host-based Intrusion Detection Data Analysis Comparison)

  • 박대경;신동규;신동일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.490-493
    • /
    • 2020
  • 오늘날 정보통신 기술이 급격하게 발달하면서 IT 인프라에서 보안의 중요성이 높아졌고 동시에 APT(Advanced Persistent threat)처럼 고도화되고 다양한 형태의 공격이 증가하고 있다. 점점 더 고도화되는 공격을 조기에 방어하거나 예측하는 것은 매우 중요한 문제이며, NIDS(Network-based Intrusion Detection System) 관련 데이터 분석만으로는 빠르게 변형하는 공격을 방어하지 못하는 경우가 많이 보고되고 있다. 따라서 HIDS(Host-based Intrusion Detection System) 데이터 분석을 통해서 위와 같은 공격을 방어하는데 현재는 침입탐지 시스템에서 생성된 데이터가 주로 사용된다. 하지만 데이터가 많이 부족하여 과거에 생성된 DARPA(Defense Advanced Research Projects Agency) 침입 탐지 평가 데이터 세트인 KDD(Knowledge Discovery and Data Mining) 같은 데이터로 연구를 하고 있어 현대 컴퓨터 시스템 특정을 반영한 데이터의 비정상행위 탐지에 대한 연구가 많이 부족하다. 본 논문에서는 기존에 사용되었던 데이터 세트에서 결여된 스레드 정보, 메타 데이터 및 버퍼 데이터를 포함하고 있으면서 최근에 생성된 LID-DS(Leipzig Intrusion Detection-Data Set) 데이터를 이용한 분석 비교 연구를 통해 앞으로 호스트 기반 침입 탐지 데이터 시스템의 나아갈 새로운 연구 방향을 제시한다.

Changes in Endophyte Communities across the Different Plant Compartments in Response to the Rice Blast Infection

  • Mehwish Roy;Sravanthi Goud Burragoni;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.299-309
    • /
    • 2024
  • The rice blast disease, caused by the fungal pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae), poses a significant threat to the global rice production. Understanding how this disease impacts the plant's microbial communities is crucial for gaining insights into host-pathogen interactions. In this study, we investigated the changes in communities of bacterial and fungal endophytes inhabiting different compartments in healthy and diseased plants. We found that both alpha and beta diversities of endophytic communities do not change significantly by the pathogen infection. Rather, the type of plant compartment appeared to be the main driver of endophytic community structures. Although the overall structure seemed to be consistent between healthy and diseased plants, our analysis of differentially abundant taxa revealed the specific bacterial and fungal operational taxonomic units that exhibited enrichment in the root and leaf compartments of infected plants. These findings suggest that endophyte communities are robust to the changes at the early stage of pathogen infection, and that some of endophytes enriched in infected plants might have roles in the defense against the pathogen.

Molecular Basis of the KEAP1-NRF2 Signaling Pathway

  • Takafumi Suzuki;Jun Takahashi;Masayuki Yamamoto
    • Molecules and Cells
    • /
    • 제46권3호
    • /
    • pp.133-141
    • /
    • 2023
  • Transcription factor NRF2 (NF-E2-related factor 2) is a master regulator of cellular responses against environmental stresses. NRF2 induces expression of detoxification and antioxidant enzymes and suppresses inductions of pro-inflammatory cytokine genes. KEAP1 (Kelch-like ECH-associated protein 1) is an adaptor subunit of CULLIN 3 (CUL3)-based E3 ubiquitin ligase. KEAP1 regulates the activity of NRF2 and acts as a sensor for oxidative and electrophilic stresses. NRF2 has been found to be activated in many types of cancers with poor prognosis. Therapeutic strategies to control NRF2-overeactivated cancers have been considered not only by targeting cancer cells with NRF2 inhibitors or NRF2 synthetic lethal chemicals, but also by targeting host defense with NRF2 inducers. Understanding precise molecular mechanisms how the KEAP1-NRF2 system senses and regulates the cellular response is critical to overcome intractable NRF2-activated cancers.

Toll-like Receptors in Host Defense and Immune Disorders

  • Lee, Joo-Y.
    • Toxicological Research
    • /
    • 제23권2호
    • /
    • pp.97-105
    • /
    • 2007
  • Toll-like receptors (TLRs) playa crucial role in initiating and regulating innate and adaptive immune responses by detecting invading microbial pathogens. TLRs can also respond to non-microbial molecules derived from damaged tissue. Accumulating evidence suggests that deregulation of TLRs results in the dysfunction of immune system and ultimately increases the risk of many immune and inflammatory diseases including infectious diseases, allergy, and autoimmune diseases. Therefore, understanding how the immune system is controlled by TLRs will provide new insight to find the way to prevent or treat infectious diseases and immune disorders.

Structural Studies of Porcine Myeloid Antibacterial Peptide, PMAP-23 in DPC micelles by NMR Spectroscopy

  • Park, Kyoungsoo;Songyub Shin;Kyungsoo Hahm;Kim, Yangmee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.29-29
    • /
    • 2001
  • Leukocytes are important elements in the host defense against microbial infections. A variety of antimicrobial peptides named as the cathelicidin family have been identified from leukocytes. PMAP-23 derived from porcine myeloid cells is an antimicrobial peptide belong to the cathelicidin family. PMAP-23 was reported to have potent growth inhibition activity against bacterial and tumor cells with no hemolytic activity.(omitted)

  • PDF

Activation of Defense Responses in Chinese Cabbage by a Nonhost Pathogen, Pseudomonas syringae pv. tomato

  • Park, Yong-Soon;Jeon, Myeong-Hoon;Lee, Sung-Hee;Moon, Jee-Sook;Cha, Jae-Soon;Kim, Hak-Yong;Cho, Tae-Ju
    • BMB Reports
    • /
    • 제38권6호
    • /
    • pp.748-754
    • /
    • 2005
  • Pseudomonas syringae pv. tomato (Pst) causes a bacterial speck disease in tomato and Arabidopsis. In Chinese cabbage, in which host-pathogen interactions are not well understood, Pst does not cause disease but rather elicits a hypersensitive response. Pst induces localized cell death and $H_2O_2$ accumulation, a typical hypersensitive response, in infiltrated cabbage leaves. Pre-inoculation with Pst was found to induce resistance to Erwinia carotovora subsp. carotovora, a pathogen that causes soft rot disease in Chinese cabbage. An examination of the expression profiles of 12 previously identified Pst-inducible genes revealed that the majority of these genes were activated by salicylic acid or BTH; however, expressions of the genes encoding PR4 and a class IV chitinase were induced by ethephon, an ethylene-releasing compound, but not by salicylic acid, BTH, or methyl jasmonate. This implies that Pst activates both salicylate-dependent and salicylate-independent defense responses in Chinese cabbage.